A374304 Number of growing self-avoiding walks with displacement n on a half-infinite strip of height 6 with a trapped endpoint.
23, 629, 15134, 323031, 6428665, 122523673, 2267420832, 41081096139, 732520397439, 12900298930153, 224940605616826, 3890634712091201, 66843522591221500, 1141958198925483582, 19416047904038468727, 328765736871514344297, 5547125910154291613320
Offset: 1
Keywords
Examples
Five of the a(1) = 23 walks are: *--* * * * * * * * * * * *--* * | | | | * * * *--* * *--* * * * * * * * | | | | | | | | * * * * * * * * * * * * * * * | | | | | | *--* * * * * *--* * *--* * * * * | | | | | | | * * * *--* * *--* * * * * * * * | | | | | * * * * * * *--* * *--* * *--* *
Links
- Jay Pantone, generating function
- Jay Pantone, Alexander R. Klotz, and Everett Sullivan, Exactly-solvable self-trapping lattice walks. II. Lattices of arbitrary height., arXiv:2407.18205 [math.CO], 2024.
Formula
See Links section for generating function.
Comments