A374306 Number of growing self-avoiding walks with displacement n on a half-infinite strip of height 7 with a trapped endpoint.
47, 2221, 94006, 3527224, 123159829, 4110628551, 133093672039, 4216993511767, 131454310596858, 4046054885054361, 123275425298494683, 3724935782123793466, 111781579014020685006, 3335061533295212856274, 99013139230297294579692, 2927094675162133314593603
Offset: 1
Keywords
Examples
Five of the a(1) = 47 walks are: *--* * * * * * * * * * * *--* * | | | | * * * * * * * * * * * * * * * | | | | * * * *--* * *--* * * * * * * * | | | | | | | | * * * * * * * * * * * * * * * | | | | | | *--* * * * * *--* * *--* * * * * | | | | | | | * * * *--* * *--* * * * * * * * | | | | | * * * * * * *--* * *--* * *--* *
Links
- Jay Pantone, Generating function.
- Jay Pantone, Alexander R. Klotz, and Everett Sullivan, Exactly-solvable self-trapping lattice walks. II. Lattices of arbitrary height., arXiv:2407.18205 [math.CO], 2024.
Formula
See Links section for generating function.
Comments