A374317 For any n > 0, let b_n(n+1) = 1, and for k = 1..n, if k divides b_n(k+1) then b_n(k) = b_n(k+1) / k otherwise b_n(k) = b_n(k+1) * k; a(n) = b_n(1).
1, 2, 6, 6, 30, 20, 140, 70, 70, 7, 77, 8316, 108108, 858, 5720, 1430, 24310, 48620, 923780, 46189, 3879876, 176358, 4056234, 2704156, 676039, 104006, 312018, 44574, 1292646, 4308820, 133573420, 267146840, 2203961430, 259289580, 363005412, 3267048708
Offset: 1
Keywords
Examples
The first terms, alongside the corresponding sequences b_n, are: n a(n) b_n -- ---- ---------------------------------------------- 1 1 [1, 1] 2 2 [2, 2, 1] 3 6 [6, 6, 3, 1] 4 6 [6, 6, 12, 4, 1] 5 30 [30, 30, 60, 20, 5, 1] 6 20 [20, 20, 40, 120, 30, 6, 1] 7 140 [140, 140, 280, 840, 210, 42, 7, 1] 8 70 [70, 70, 140, 420, 1680, 336, 56, 8, 1] 9 70 [70, 70, 35, 105, 420, 84, 504, 72, 9, 1] 10 7 [7, 7, 14, 42, 168, 840, 5040, 720, 90, 10, 1]
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..1000
- Rémy Sigrist, Colored representation of b_n(k) for n <= 1000 (where the color at (x, y) is function of b_x(y))
Programs
-
PARI
a(n) = { my (b = 1); forstep (k = n, 1, -1, if (b % k==0, b /= k, b *= k);); return (b); }
Comments