This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374318 #8 Jul 06 2024 14:15:07 %S A374318 0,1,1,0,2,1,1,2,0,1,1,2,0,1,1,2,2,1,1,0,2,1,1,0,2,1,1,0,2,1,1,0,2,1, %T A374318 1,0,2,1,1,0,2,1,1,2,2,1,1,2,2,1,1,2,0,1,1,2,0,1,1,2,0,1,1,2,0,1,1,2, %U A374318 0,1,1,2,0,1,1,2,0,1,1,2,0,1,1,2,0,1,1 %N A374318 For any n > 0, let b_n(n+1) = 0, and for k = 1..n, if b_n(k+1) >= k then b_n(k) = b_n(k+1) - k otherwise b_n(k) = b_n(k+1) + k; a(n) = b_n(1). %C A374318 This sequence is a variant of A008344; here we add or subtract by numbers from n down to 1, there by numbers from 1 up to n. %C A374318 Apparently, the sequence only contains 0's, 1's and 2's. %H A374318 Rémy Sigrist, <a href="/A374318/a374318.png">Colored representation of b_n(k) for n <= 1000</a> (where the color at (x, y) is function of b_x(y)) %H A374318 Rémy Sigrist, <a href="/A374318/a374318_1.png">Log-log scatterplot of the ordinal transform of the first 10000 terms</a> %F A374318 Empirically, a(n) = 1 iff n belongs to A042963. %e A374318 The first terms, alongside the corresponding sequences b_n, are: %e A374318 n a(n) b_n %e A374318 -- ---- ---------------------------------- %e A374318 0 0 [0] %e A374318 1 1 [1, 0] %e A374318 2 1 [1, 2, 0] %e A374318 3 0 [0, 1, 3, 0] %e A374318 4 2 [2, 3, 1, 4, 0] %e A374318 5 1 [1, 2, 4, 1, 5, 0] %e A374318 6 1 [1, 0, 2, 5, 1, 6, 0] %e A374318 7 2 [2, 3, 5, 2, 6, 1, 7, 0] %e A374318 8 0 [0, 1, 3, 6, 2, 7, 1, 8, 0] %e A374318 9 1 [1, 2, 0, 3, 7, 2, 8, 1, 9, 0] %e A374318 10 1 [1, 2, 4, 7, 3, 8, 2, 9, 1, 10, 0] %o A374318 (PARI) a(n) = { my (b = 0); forstep (k = n, 1, -1, if (b >= k, b -= k, b += k);); return (b); } %Y A374318 Cf. A008344, A042963, A374317. %K A374318 nonn %O A374318 0,5 %A A374318 _Rémy Sigrist_, Jul 04 2024