cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374325 The maximal exponent in the prime factorization of the numbers whose maximal exponent in their prime factorization is a square.

This page as a plain text file.
%I A374325 #7 Jul 06 2024 05:28:26
%S A374325 0,1,1,1,1,1,1,1,1,1,1,4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,4,1,
%T A374325 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,4,4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
%U A374325 1,1,1,1,1,1,4,1,1,1,1,1,1,1,1,1,1,1,1
%N A374325 The maximal exponent in the prime factorization of the numbers whose maximal exponent in their prime factorization is a square.
%C A374325 First differs from A369935 at n = 95.
%C A374325 The first occurrence of k^2, for k = 0, 1, ..., is at 1, 2, 12, 335, 42563, ..., which is the position of 2^(k^2) at A369937.
%H A374325 Amiram Eldar, <a href="/A374325/b374325.txt">Table of n, a(n) for n = 1..10000</a>
%F A374325 a(n) = A374326(n)^2.
%F A374325 a(n) = A051903(A369937(n)).
%F A374325 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=1} k^2 * d(k) / Sum_{k>=1} d(k) = 1.19949058780036416105..., where d(k) = 1/zeta(k^2+1) - 1/zeta(k^2) for k>=2, and d(1) = 1/zeta(2).
%t A374325 f[n_] := Module[{e = If[n == 1, 0, Max[FactorInteger[n][[;; , 2]]]]}, If[IntegerQ@ Sqrt[e], e, Nothing]]; Array[f, 200]
%o A374325 (PARI) lista(kmax) = {my(e); print1(0, ", "); for(k = 2, kmax, e = vecmax(factor(k)[, 2]); if(issquare(e), print1(e, ", ")));}
%Y A374325 Cf. A051903, A369935, A369937.
%Y A374325 Similar sequences: A374324, A374326, A374327, A374328.
%K A374325 nonn,easy
%O A374325 1,12
%A A374325 _Amiram Eldar_, Jul 04 2024