cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374326 The square root of the maximal exponent in the prime factorization of the numbers whose maximal exponent in their prime factorization is a square.

This page as a plain text file.
%I A374326 #7 Jul 06 2024 05:28:43
%S A374326 0,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,
%T A374326 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
%U A374326 1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1
%N A374326 The square root of the maximal exponent in the prime factorization of the numbers whose maximal exponent in their prime factorization is a square.
%C A374326 First differs from A369936 at n = 95.
%C A374326 The first occurrence of k = 0, 1, ... is at 1, 2, 12, 335, 42563, ..., which is the position of 2^(k^2) at A369937.
%H A374326 Amiram Eldar, <a href="/A374326/b374326.txt">Table of n, a(n) for n = 1..10000</a>
%F A374326 a(n) = sqrt(A374325(n)).
%F A374326 a(n) = sqrt(A051903(A369937(n))).
%F A374326 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=1} k * d(k) / Sum_{k>=1} d(k) = 1.06543556163434367736..., where d(k) = 1/zeta(k^2+1) - 1/zeta(k^2) for k>=2, and d(1) = 1/zeta(2).
%t A374326 f[n_] := Module[{s = Sqrt[If[n == 1, 0, Max[FactorInteger[n][[;; , 2]]]]]}, If[IntegerQ[s], s, Nothing]]; Array[f, 200]
%o A374326 (PARI) lista(kmax) = {my(e); print1(0, ", "); for(k = 2, kmax, e = vecmax(factor(k)[, 2]); if(issquare(e), print1(sqrtint(e), ", ")));}
%Y A374326 Cf. A051903, A369936, A369937.
%Y A374326 Similar sequences: A374324, A374325, A374327, A374328.
%K A374326 nonn,easy
%O A374326 1,12
%A A374326 _Amiram Eldar_, Jul 04 2024