cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374327 The maximal exponent in the prime factorization of the numbers whose maximal exponent in their prime factorization is a power of 2.

This page as a plain text file.
%I A374327 #8 Jul 06 2024 05:29:27
%S A374327 1,1,2,1,1,1,2,1,1,2,1,1,1,4,1,2,1,2,1,1,1,2,1,2,1,1,1,1,1,1,2,1,1,1,
%T A374327 1,1,1,2,2,1,1,4,2,2,1,2,1,1,1,1,1,2,1,1,2,1,1,1,2,1,1,1,1,1,2,2,1,1,
%U A374327 1,4,4,1,1,2,1,1,1,1,2,1,2,1,1,1,1,2,2
%N A374327 The maximal exponent in the prime factorization of the numbers whose maximal exponent in their prime factorization is a power of 2.
%C A374327 First differs from {A369933(n+1), n>=1} at n = 378.
%C A374327 The first occurrence of 2^k, for k = 0, 1, ..., is at 1, 3, 14, 224, 57307, ..., which is the position of 2^(2^k) at A369938.
%H A374327 Amiram Eldar, <a href="/A374327/b374327.txt">Table of n, a(n) for n = 1..10000</a>
%F A374327 a(n) = 2^A374328(n).
%F A374327 a(n) = A051903(A369938(n)).
%F A374327 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=0} 2^k * d(k) / Sum_{k>=0} d(k) = 1.41151462942556759486..., where d(k) = 1/zeta(2^k+1) - 1/zeta(2^k) for k>=1, and d(0) = 1/zeta(2).
%t A374327 f[n_] := Module[{e = If[n == 1, 0, Max[FactorInteger[n][[;; , 2]]]]}, If[e == 2^IntegerExponent[e, 2], e, Nothing]]; Array[f, 150]
%o A374327 (PARI) lista(kmax) = {my(e); for(k = 2, kmax, e = vecmax(factor(k)[, 2]); if(e >> valuation(e, 2) == 1, print1(e, ", ")));}
%Y A374327 Cf. A051903, A369933, A369938.
%Y A374327 Similar sequences: A374324, A374325, A374326, A374328.
%K A374327 nonn,easy
%O A374327 1,3
%A A374327 _Amiram Eldar_, Jul 04 2024