This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374330 #8 Jul 23 2024 21:44:53 %S A374330 2,2,6,8,2,10,3,14,6,8,22,7,8,21,9,14,12,45,14,17,45,17,21,20,18,17, %T A374330 64,21,54,28,25,22,22,72,37,82,26,28,31,43,36,93,44,95,38,95,41,38,33, %U A374330 106,36,49,111,65,53,53,49,113,55,68,138,80,49,50,152,61,55,43,73,120 %N A374330 a(n) is the number of numbers k <= prime(n)^2 such that A075860(k) = prime(n). %C A374330 For all n>=1, a(n)>=2. %e A374330 For n=3, prime(3)=5. The only integers k <= 5^2 such that A075860(k)=5 are 5,6,12,18,24 and 25. Therefore a(3)=6. %p A374330 f := proc (n) %p A374330 option remember; %p A374330 if isprime(n) then %p A374330 return n %p A374330 else %p A374330 return procname(convert(numtheory:-factorset(n), `+`)) %p A374330 end if %p A374330 end proc: %p A374330 g := proc (n) %p A374330 local count, k; %p A374330 count := 0; %p A374330 for k from ithprime(n) to ithprime(n)^2 do %p A374330 if f(k) = ithprime(n) then %p A374330 count := count + 1 %p A374330 end if %p A374330 end do; %p A374330 return count %p A374330 end proc: %p A374330 map(g, [$1 .. 80]); %o A374330 (PARI) fp(n, pn) = if (n == pn, n, fp(vecsum(factor(n)[, 1]), n)); %o A374330 f(n) = if (n==1, 0, fp(n, 0)); \\ A075860 %o A374330 a(n) = sum(k=1, prime(n)^2, f(k) == prime(n)); \\ _Michel Marcus_, Jul 04 2024 %Y A374330 Cf. A001248, A075860. %K A374330 nonn %O A374330 1,1 %A A374330 _Rafik Khalfi_, Jul 04 2024