cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374331 Palindromic squarefree semiprimes such that the sum of the two prime factors is also a palindrome.

This page as a plain text file.
%I A374331 #26 Jul 10 2024 14:03:55
%S A374331 6,717,989,13231,15251,15751,18281,19291,31613,34043,35653,37073,
%T A374331 37673,38383,38683,97079,98789,99899,1115111,1226221,1794971,3525253,
%U A374331 3755573,3782873,104646401,114202411,127888721,133707331,134010431,137181731,138050831,146828641,157494751,157585751,161555161
%N A374331 Palindromic squarefree semiprimes such that the sum of the two prime factors is also a palindrome.
%e A374331 717 is a term because 717 = 3*239 and 3 + 239 = 242.
%t A374331 Select[Range[10^6], PalindromeQ[#] && SquareFreeQ[#] && PrimeNu[#]==2 && PalindromeQ[Total[First/@FactorInteger[#]]]&] (* _Stefano Spezia_, Jul 06 2024 *)
%o A374331 (PARI) ispal(n)=my(d=digits(n));d==Vecrev(d) \\
%o A374331 for(a=2,10^10,if(omega(a)==2&&bigomega(a)==2 &&ispal(a),b=factor(a)[1,1]+factor(a)[2,1]; if(ispal(b),print1(a,","))))
%o A374331 (PARI) isok(k) = if (issquarefree(k) && ispal(k), my(f=factor(k)); (bigomega(f)==2) && ispal(f[1,1]+f[2,1])); \\ _Michel Marcus_, Jul 05 2024
%Y A374331 Cf. A002113, A006881.
%K A374331 nonn,base
%O A374331 1,1
%A A374331 _Alexandru Petrescu_, Jul 05 2024