A374356 a(n) is the greatest fibbinary number f <= n such that n - f is also a fibbinary number whose binary expansion has no common 1's with that of f (where fibbinary numbers correspond to A003714).
0, 1, 2, 2, 4, 5, 4, 5, 8, 9, 10, 10, 8, 9, 10, 10, 16, 17, 18, 18, 20, 21, 20, 21, 16, 17, 18, 18, 20, 21, 20, 21, 32, 33, 34, 34, 36, 37, 36, 37, 40, 41, 42, 42, 40, 41, 42, 42, 32, 33, 34, 34, 36, 37, 36, 37, 40, 41, 42, 42, 40, 41, 42, 42, 64, 65, 66, 66
Offset: 0
Examples
The first terms, in decimal and in binary, are: n a(n) bin(n) bin(a(n)) -- ---- ------ --------- 0 0 0 0 1 1 1 1 2 2 10 10 3 2 11 10 4 4 100 100 5 5 101 101 6 4 110 100 7 5 111 101 8 8 1000 1000 9 9 1001 1001 10 10 1010 1010 11 10 1011 1010 12 8 1100 1000 13 9 1101 1001 14 10 1110 1010 15 10 1111 1010 16 16 10000 10000
Links
Crossrefs
Programs
-
Mathematica
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; fbi[q_]:=If[q=={},0,Total[2^q]/2]; Table[Max@@fbi/@Select[Subsets[bpe[n]],FreeQ[Differences[#],1]&],{n,0,100}] (* Gus Wiseman, Jul 11 2025 *)
-
PARI
a(n) = { my (v = 0, e, x, y, b); while (n, x = y = 0; e = valuation(n, 2); for (k = 0, oo, if (bittest(n, e+k), n -= b = 2^(e+k); [x, y] = [y + b, x], v += x; break;););); return (v); }
Comments