cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374363 a(n) is the greatest term t <= n of A005836 such that n - t also belongs to A005836.

This page as a plain text file.
%I A374363 #9 Jul 09 2024 02:21:41
%S A374363 0,1,1,3,4,4,3,4,4,9,10,10,12,13,13,12,13,13,9,10,10,12,13,13,12,13,
%T A374363 13,27,28,28,30,31,31,30,31,31,36,37,37,39,40,40,39,40,40,36,37,37,39,
%U A374363 40,40,39,40,40,27,28,28,30,31,31,30,31,31,36,37,37,39,40
%N A374363 a(n) is the greatest term t <= n of A005836 such that n - t also belongs to A005836.
%C A374363 To compute a(n): in the ternary expansion of n, 2's by 1's.
%H A374363 Rémy Sigrist, <a href="/A374363/b374363.txt">Table of n, a(n) for n = 0..6560</a>
%F A374363 a(n) = T(n, A120880(k)-1).
%F A374363 a(n) = n - A374362(n).
%F A374363 a(n) <= n with equality iff n belongs to A005836.
%F A374363 a(n) = A005836(1+A289831(n)).
%e A374363 The first terms, in decimal and in ternary, are:
%e A374363   n   a(n)  ter(n)  ter(a(n))
%e A374363   --  ----  ------  ---------
%e A374363    0     0       0          0
%e A374363    1     1       1          1
%e A374363    2     1       2          1
%e A374363    3     3      10         10
%e A374363    4     4      11         11
%e A374363    5     4      12         11
%e A374363    6     3      20         10
%e A374363    7     4      21         11
%e A374363    8     4      22         11
%e A374363    9     9     100        100
%e A374363   10    10     101        101
%e A374363   11    10     102        101
%e A374363   12    12     110        110
%e A374363   13    13     111        111
%e A374363   14    13     112        111
%e A374363   15    12     120        110
%o A374363 (PARI) a(n) = fromdigits(apply(d -> [0, 1, 1][1+d], digits(n, 3)), 3)
%Y A374363 Cf. A005836, A120880, A289831, A374361, A374362.
%K A374363 nonn,base
%O A374363 0,4
%A A374363 _Rémy Sigrist_, Jul 06 2024