This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374371 #5 Jul 07 2024 13:51:09 %S A374371 4,36,16,10045,2850,6426,1408,265926,69300,79135,9504,195615,145236, %T A374371 126630,42120,81356859,9410205,165550,1379840,11340,3009069, %U A374371 8321351148,316200,47555937,218338146,9042726,822528,12300400,300186051,46955700,766737400,206898615 %N A374371 Least n-gonal number that can be written as a product of two or more smaller n-gonal numbers, or 0 if no such number exists. %e A374371 For 2 <= n <= 33, the n-gonal number a(n) can be written as a product of smaller n-gonal numbers in the following ways: %e A374371 n | a(n) %e A374371 ---+--------------------------- %e A374371 2 | 4 = 2*2 %e A374371 3 | 36 = 6*6 %e A374371 4 | 16 = 4*4 %e A374371 5 | 10045 = 35*287 %e A374371 6 | 2850 = 15*190 %e A374371 7 | 6426 = 34*189 %e A374371 8 | 1408 = 8*176 %e A374371 9 | 265926 = 46*5781 %e A374371 10 | 69300 = 10*6930 %e A374371 11 | 79135 = 95*833 %e A374371 12 | 9504 = 33*288 %e A374371 13 | 195615 = 115*1701 %e A374371 14 | 145236 = 14*10374 %e A374371 15 | 126630 = 15*42*201 %e A374371 16 | 42120 = 45*936 %e A374371 17 | 81356859 = 549*148191 %e A374371 18 | 9410205 = 343*27435 %e A374371 19 | 165550 = 175*946 %e A374371 20 | 1379840 = 20*68992 %e A374371 21 | 11340 = 21*540 %e A374371 22 | 3009069 = 427*7047 %e A374371 23 | 8321351148 = 23*66*5481786 %e A374371 24 | 316200 = 136*2325 %e A374371 25 | 47555937 = 351*135487 %e A374371 26 | 218338146 = 26*8397621 %e A374371 27 | 9042726 = 154*58719 %e A374371 28 | 822528 = 28*29376 %e A374371 29 | 12300400 = 764*16100 %e A374371 30 | 300186051 = 13051*23001 %e A374371 31 | 46955700 = 3060*15345 %e A374371 32 | 766737400 = 5720*134045 %e A374371 33 | 206898615 = 12615*16401 %Y A374371 Second column of A374370. %Y A374371 Cf. A057145. %K A374371 nonn %O A374371 2,1 %A A374371 _Pontus von Brömssen_, Jul 07 2024