This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374376 #29 Feb 19 2025 12:11:59 %S A374376 2,23,-1,223,22,-1,2237,235,27,-1,22273,2227,222,132,-1,222323,22223, %T A374376 2222,225,32,-1,2222273,222223,22222,2223,252,729,-1,22222223,2222557, %U A374376 222227,22225,2322,352,192,-1,222222227,22222237,2222222,222225,22232,2232,2352,2112,-1,2222222377,222222223 %N A374376 Array read by downward antidiagonals: T(k,n) is the least number that has k prime factors (counted with multiplicity) and is the concatenation of n primes, or -1 if there is no such number. %D A374376 T(k,1) = -1 for k > 1. %e A374376 Array starts %e A374376 2 23 223 2237 22273 ... %e A374376 -1 22 235 2227 22223 ... %e A374376 -1 27 222 2222 22222 ... %e A374376 -1 132 225 2223 22225 ... %e A374376 -1 32 252 2322 22232 ... %e A374376 A(4,3) = 225 because 225 = 3^2 * 5^2 is the product of 4 primes (with multiplicity) and is the concatenation of the 3 primes 2, 2 and 5, and is the least number that works. %p A374376 PD[1]:= [2,3,5,7]: %p A374376 for i from 2 to 7 do PD[i]:= select(isprime,[seq(i,i=10^(i-1)+1..10^i-1,2)]) od: %p A374376 dcat:= proc(a,b) 10^(ilog10(b)+1)*a+b end proc: %p A374376 cp:= proc(m,n) option remember; local d,p,x,R; %p A374376 if n = 1 then return PD[m] fi; %p A374376 R:= {}; %p A374376 for d from 1 to m-n+1 do %p A374376 R:= R union {seq(seq(dcat(p,x),p=PD[d]),x=procname(m-d,n-1))} %p A374376 od; %p A374376 R %p A374376 end proc: %p A374376 F:= proc(n,N) %p A374376 local V,count,d,x,v; %p A374376 if n = 1 then return <2,(-1)$(N-1)> fi; %p A374376 V:= Vector(N); count:= 0; %p A374376 for d from n while count < N do %p A374376 for x in sort(convert(cp(d,n),list)) while count < N do %p A374376 v:= numtheory:-bigomega(x); %p A374376 if v <= N and V[v] = 0 then %p A374376 V[v]:= x; count:= count+1; %p A374376 fi %p A374376 od od: %p A374376 V; %p A374376 end proc: %p A374376 N:= 10: M:= Matrix(N,N): %p A374376 for i from 1 to N do %p A374376 V:= F(i,N+1-i); %p A374376 M[i,1..N+1-i]:= V; %p A374376 od: %p A374376 [seq(seq(M[t-i,i],i=1..t-1),t=2..N+1)]; %Y A374376 Cf. A001222, A069837 (first row), A374665 (main diagonal), A374669 (second column). %K A374376 sign,base,tabl %O A374376 1,1 %A A374376 _Robert Israel_, Jul 14 2024