This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374379 #8 Aug 06 2024 21:51:39 %S A374379 1,2,3,5,4,6,10,7,9,20,14,12,15,21,8,25,18,28,30,11,35,24,22,70,27,33, %T A374379 140,13,66,105,26,44,210,39,55,42,52,110,63,65,88,84,40,77,36,45,49, %U A374379 16,60,56,99,50,91,132,75,98,121,90,112,143,120,119,286,135,126,154,80,48,147 %N A374379 a(1) = 1, a(2) = 2. Let i = a(n-2), j = a(n-1), then for n > 2 a(n) is the least novel k such that rad(k) !| rad(i*j) whereas rad(i*j*k) is a primorial number (A002110), where rad is A007947. %C A374379 For n > 2 a(n) is prime iff rad(i*j) is a primorial number, for then k is the smallest prime which does not divide rad(i*j). %C A374379 Initially same terms as A362889, but divergence occurs at a(69) = 147. %C A374379 Conjectured to be a permutation of the natural numbers with primes in order. %H A374379 Michael De Vlieger, <a href="/A374379/b374379.txt">Table of n, a(n) for n = 1..2050</a> %H A374379 Michael De Vlieger, <a href="/A374379/a374379.png">Log log scatterplot of log_10(a(n))</a>, n = 1..2048. %e A374379 a(3) = 3 since rad(3) !| rad(1*2) whereas rad (1*2*3) = 6 = A002110(2). %e A374379 a(5,6) = {4,6}—> a(7) = 10 since rad(10) !| rad(24), rad(4*6*10) = 30 = A002110(3) and there is no smaller novel term with this property. %e A374379 From _Michael De Vlieger_, Jul 06 2024: (Start) %e A374379 Table of a(3..18) showing prime decomposition of rad(i*j) and rad(i*j*k): %e A374379 n a(n) rad(i*j) rad(i*j*k) %e A374379 ------------------------------- %e A374379 3 3 2 2 3 %e A374379 4 5 2 3 2 3 5 %e A374379 5 4 . 3 5 2 3 5 %e A374379 6 6 2 . 5 2 3 5 %e A374379 7 10 2 3 2 3 5 %e A374379 8 7 2 3 5 2 3 5 7 %e A374379 9 9 2 . 5 7 2 3 5 7 %e A374379 10 20 . 3 . 7 2 3 5 7 %e A374379 11 14 2 3 5 2 3 5 7 %e A374379 12 12 2 . 5 7 2 3 5 7 %e A374379 13 15 2 3 . 7 2 3 5 7 %e A374379 14 21 2 3 5 2 3 5 7 %e A374379 15 8 . 3 5 7 2 3 5 7 %e A374379 16 25 2 3 . 7 2 3 5 7 %e A374379 17 18 2 . 5 2 3 5 %e A374379 18 28 2 3 5 2 3 5 7 (End) %t A374379 nn = 1200; c[_] := False; rad[n_] := rad[n] = Times @@ FactorInteger[n][[All, 1]]; %t A374379 Array[Set[{a[#], c[#]}, {#, True}] &, 2]; %t A374379 f[n_] := Or[IntegerQ@ Log2[n], %t A374379 And[EvenQ[n], Union@ Differences@ Map[PrimePi, FactorInteger[n][[All, 1]]] == {1}]]; i = a[1]; j = a[2]; u = 3; %t A374379 Monitor[Do[r = rad[i*j]; k = u; %t A374379 While[Or[c[k], Divisible[#, rad[k]], ! f[# k]] &[i*j], k++]; %t A374379 Set[{a[n], c[k], i, j}, {k, True, j, k}]; %t A374379 If[k == u, While[c[u], u++]], {n, 3, nn}], n]; %t A374379 Array[a, nn] (* _Michael De Vlieger_, Jul 06 2024 *) %Y A374379 Cf. A002110, A007947, A055932, A362889. %K A374379 nonn %O A374379 1,2 %A A374379 _David James Sycamore_, Jul 06 2024