This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374392 #10 Jul 11 2024 16:26:52 %S A374392 3,91,66,340,2548,30940,67228,6290620,81818748,1336727934,19729482496, %T A374392 358398854656,1934923637500,115877891562496 %N A374392 a(n) is the least number k such that k, k + 2 and k + 4 all have exactly n prime factors, counted with multiplicity. %C A374392 For n >= 3, a(n) <= 2 * A113752(n-1), with equality when a(n) is even. %C A374392 a(15) <= 2495158931562496. - _Martin Ehrenstein_, Jul 11 2024 %e A374392 a(3) = 66 because 66 = 2 * 3 * 11, 68 = 2^2 * 17 and 70 = 2 * 5 * 7 all have 3 prime factors, counted with multiplicity, and 66 is the least number that works. %p A374392 f:= proc(m) uses priqueue; %p A374392 local S, pq, T, v, TP, q, p, j; %p A374392 S:= {-10,-9,-8,-7}; %p A374392 initialize(pq); %p A374392 insert([-2^m,2$m],pq); %p A374392 do %p A374392 T:= extract(pq); v:= -T[1]; %p A374392 if {v-2,v-4} subset S then return v-4 fi; %p A374392 S:= (S minus {min(S)}) union {v}; %p A374392 q:= T[-1]; %p A374392 p:= nextprime(q); %p A374392 for j from m+1 to 2 by -1 do %p A374392 if T[j] <> q then break fi; %p A374392 TP:= [T[1]*(p/q)^(m+2-j),op(T[2..j-1]),p$(m+2-j)]; %p A374392 insert(TP, pq) %p A374392 od od; %p A374392 end proc: %p A374392 map(f, [$1..11]); %Y A374392 Cf. A001222, A113752. %K A374392 nonn,hard,more %O A374392 1,1 %A A374392 _Zak Seidov_ and _Robert Israel_, Jul 07 2024 %E A374392 a(12)-a(14) from _Martin Ehrenstein_, Jul 11 2024