A374404 a(1) = 1, a(2) = 2. Let i = a(n-2), j = a(n-1). For n > 2 if rad(i*j) is primorial number A002110(t), a(n) is least novel k such that rad(i*j*k) = A002110(t+1). Otherwise, if rad(i*j) is not primorial, a(n) is least novel k such that rad(i*j*k) = A002110(s), where prime(s) = A006530(i*j); rad = A007947.
1, 2, 3, 5, 4, 6, 10, 7, 9, 20, 14, 12, 15, 21, 8, 25, 18, 28, 30, 11, 35, 24, 22, 70, 27, 33, 140, 13, 66, 105, 26, 44, 210, 39, 55, 42, 52, 110, 63, 65, 88, 84, 40, 77, 36, 45, 49, 16, 60, 56, 99, 50, 98, 48, 75, 112, 121, 90, 126, 132, 80, 147, 143, 100, 168
Offset: 1
Keywords
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, Log log scatterplot of a(n), n = 1..2^14, showing primes in red, perfect prime powers in gold, squarefree composites in green, and numbers neither squarefree nor prime powers in blue and purple, with purple representing powerful numbers that are not prime powers.
Programs
-
Mathematica
nn = 120; c[] := False; m[] := 1; Do[Set[{a[n], c[n], m[n]}, {n, True, 2}], {n, 3}]; i = a[2]; j = a[3]; f[x_] := f[x] = FactorInteger[x][[All, 1]]; q[x_] := Or[IntegerQ@ Log2[x], And[EvenQ[x], Union@ Differences@ PrimePi@ f[x] == {1}]]; Do[If[q[i*j], s = NextPrime@Last@f[i*j]; k = 1; While[Or[c[k*s], ! q[i*j*k*s]], k++]; k *= s, t = Product[Prime[r], {r, PrimePi@ Last@ f[i*j]}]; s = t/Apply[Times, f[i*j]]; k = 1; While[Or[c[k*s], Times @@ f[i*j*k*s] != t], k++]; k *= s]; Set[{a[n], c[k], i, j}, {k, True, j, k}], {n, 4, nn}]; Array[a, nn] (* Michael De Vlieger, Jul 12 2024 *)
Comments