This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374411 #19 Jul 19 2024 22:34:41 %S A374411 1,1,2,1,2,3,1,2,6,4,1,2,6,16,5,1,2,6,20,25,6,1,2,6,24,60,36,7,1,2,6, %T A374411 24,85,126,49,8,1,2,6,24,100,222,196,64,9,1,2,6,24,115,390,511,288,81, %U A374411 10,1,2,6,24,120,558,1085,912,405,100,11,1,2,6,24,120,654,1911,2328,1458,550,121,12 %N A374411 Triangle T(n, k) read by rows: Maximum number of linear patterns of length k in a circular permutation of length n taken from row n in A194832. %C A374411 Pattern counting considers only one revolution otherwise every sufficiently long circular permutation, with enough revolutions allowed, contains every pattern. %C A374411 Each column k is divisible by k, because as we count linear patterns inside a circular permutation, we may obtain all circular shifts of the subset which represents a particular pattern. %F A374411 T(n, k+1)/(k+1) <= A371823(n-1, k) <= A373778(n-1, k). %e A374411 The triangle begins: %e A374411 n| k: 1| 2| 3| 4| 5| 6| 7| 8| 9 %e A374411 ========================================= %e A374411 [1] 1 %e A374411 [2] 1, 2 %e A374411 [3] 1, 2, 3 %e A374411 [4] 1, 2, 6, 4 %e A374411 [5] 1, 2, 6, 16, 5 %e A374411 [6] 1, 2, 6, 20, 25, 6 %e A374411 [7] 1, 2, 6, 24, 60, 36, 7 %e A374411 [8] 1, 2, 6, 24, 85, 126, 49, 8 %e A374411 [9] 1, 2, 6, 24, 100, 222, 196, 64, 9 %e A374411 . %e A374411 Row 5 of A194832 is [3, 1, 4, 2, 5]. %e A374411 T(5, 4) = 16 because we will find these 16 distinct patterns of length 4: %e A374411 [3, 1, 4, 2] [1, 4, 2, 3] [4, 2, 3, 1] [2, 3, 1, 4] %e A374411 These are rotations of the ordering [1, 4, 2, 3]. %e A374411 [1, 4, 2, 5] [4, 2, 5, 1] [2, 5, 1, 4] [5, 1, 4, 2] %e A374411 These are rotations of the ordering [1, 3, 2, 4]. %e A374411 [2, 5, 3, 1] [5, 3, 1, 2] [3, 1, 2, 5] [1, 2, 5, 3] %e A374411 These are rotations of the ordering [1, 2, 4, 3]. %e A374411 [5, 3, 1, 4] [3, 1, 4, 5] [1, 4, 5, 3] [4, 5, 3, 1] %e A374411 These are rotations of the ordering [1, 3, 4, 2]. %Y A374411 Cf. A194832, A371823, A373778. %K A374411 nonn,tabl %O A374411 1,3 %A A374411 _Thomas Scheuerle_, Jul 08 2024