This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374412 #18 Feb 19 2025 12:06:35 %S A374412 1,1,1,2,1,1,2,3,4,1,2,1,2,3,4,5,6,1,1,2,1,2,3,4,1,2,3,4,5,6,7,8,9,10, %T A374412 1,2,1,2,3,4,5,6,7,8,9,10,11,12,1,2,3,4,5,6,1,2,4,7,8,11,13,14,1,1,2, %U A374412 3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2 %N A374412 Irregular triangle read by rows: Numerators of exponents of j-th root of the polynomial P(n,x) in A374385, and 1 if n is a power of 2, (numerators of exponents of roots in increasing order). %C A374412 Denominators are A204455(n) for row n. %C A374412 Conjecture 1: The j-th root of the n-th polynomial is: %C A374412 Root(P(n,x) = 0, j) = -(-1)^(j + n)*(-1)^(j/A204455(n))*[GCD(A204455(n),j) = 1], where 1 <= j <= A204455(n) and where terms equal to 0 are deleted. Conjecture 1 has been verified up to n = 200. %F A374412 P(n,x) = denominator(Sum_{h=0..infinity} Sum_{k=1..n} A023900(GCD(n,k))*x^(n*h + k)). %F A374412 a(n,j) = numerator of exponent of j-th root of [x^m] P(n,x), n >= 0, 0 <= m <= abs(A023900(n)). %F A374412 Conjecture 1: a(n,j) = j*[GCD(A204455(n), j) = 1], 1 <= j <= A204455(n), where zeros are deleted. Verified up to n = 200. %e A374412 The first few polynomial roots are: %e A374412 { %e A374412 {1}, %e A374412 {-1}, %e A374412 {-(-1)^(1/3), (-1)^(2/3)}, %e A374412 {-1}, %e A374412 {-(-1)^(1/5), (-1)^(2/5), -(-1)^(3/5), (-1)^(4/5)}, %e A374412 {(-1)^(1/3), -(-1)^(2/3)}, %e A374412 {-(-1)^(1/7), (-1)^(2/7), -(-1)^(3/7), (-1)^(4/7), -(-1)^(5/7), (-1)^(6/7)}, %e A374412 {-1}, %e A374412 {-(-1)^(1/3), (-1)^(2/3)}, %e A374412 {(-1)^(1/5), -(-1)^(2/5), (-1)^(3/5), -(-1)^(4/5)} %e A374412 } %e A374412 The irregular triangle a(n,j) begins: %e A374412 n\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ... %e A374412 1: 1 %e A374412 2: 1 %e A374412 3: 1 2 %e A374412 4: 1 %e A374412 5: 1 2 3 4 %e A374412 6: 1 2 %e A374412 7: 1 2 3 4 5 6 %e A374412 8: 1 %e A374412 9: 1 2 %e A374412 10: 1 2 3 4 %e A374412 11: 1 2 3 4 5 6 7 8 9 10 %e A374412 12: 1 2 %e A374412 13: 1 2 3 4 5 6 7 8 9 10 11 12 %e A374412 14: 1 2 3 4 5 6 %e A374412 15: 1 2 4 7 8 11 13 14 %e A374412 16: 1 %e A374412 17: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 %e A374412 18: 1 2 %e A374412 ... %t A374412 nn = 18; f[n_] := DivisorSum[n, MoebiusMu[#] # &]; roots = Table[(x /. Solve[Denominator[Sum[Sum[f[GCD[n, k]]*x^(n*h + k), {k, 1, n}], {h, 0, Infinity}]] == 0, x]), {n, 1, nn}]; Flatten[ReplaceAll[Numerator[Exponent[roots, -1]], 0 -> 1]] %t A374412 (* Conjectured formula: *) %t A374412 nn = 18; A204455[n_] := -(1/2)*(-2 + If[Mod[n, 2] == 0, 1, 0])*Sum[EulerPhi[k]*If[Mod[n, k] == 0, 1, 0]*MoebiusMu[k]^2, {k, 1, n}]; Flatten[Table[DeleteCases[Table[j*If[GCD[A204455[n], j] == 1, 1, 0], {j, 1, A204455[n]}], 0], {n, 1, nn}]] %Y A374412 Cf. A374385 (coefficients), A023900, A173557, A204455. %K A374412 nonn,tabf,frac %O A374412 1,4 %A A374412 _Mats Granvik_, Jul 08 2024