cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374417 a(n) is the smallest number which can be represented as the sum of n distinct positive cubes in exactly 2 ways, or -1 if no such number exists.

This page as a plain text file.
%I A374417 #19 Jul 12 2024 11:28:05
%S A374417 -1,1729,1009,1036,1161,1504,1899,2512,3024,4355,6552,9296,11648,
%T A374417 14392,19305,25137,30997,35757,44092,53353,64001,76168,88669,104625,
%U A374417 122201,144153,167401,191772,216161,245952,278757,312993,352297,393822,434295,489167,541081,605656,671446
%N A374417 a(n) is the smallest number which can be represented as the sum of n distinct positive cubes in exactly 2 ways, or -1 if no such number exists.
%H A374417 David A. Corneth, <a href="/A374417/b374417.txt">Table of n, a(n) for n = 1..675</a>
%H A374417 <a href="/index/Su#ssq">Index entries for sequences related to sums of cubes</a>
%e A374417 a(2) = 1729 = 1^3 + 12^3 = 9^3 + 10^3.
%e A374417 a(3) = 1009 = 1^3 + 2^3 + 10^3 = 4^3 + 6^3 + 9^3.
%p A374417 G:= mul(1+t*x^(i^3), i=1..35):
%p A374417 R:= -1:
%p A374417 for m from 2 do
%p A374417   C:= expand(coeff(G,t,m)):
%p A374417   C2:= convert(select(s -> subs(x=1,s)=2, C),list);
%p A374417   v:= min(map(degree,C2));
%p A374417   if v >= 36^3 + add(i^3,i=1..m-1) then break fi;
%p A374417   R:= R,v;
%p A374417 od:
%p A374417 R; # _Robert Israel_, Jul 08 2024
%Y A374417 Cf. A000537, A011541, A350270, A374287.
%K A374417 sign
%O A374417 1,2
%A A374417 _Ilya Gutkovskiy_, Jul 08 2024
%E A374417 a(15)-a(27) from _Robert Israel_, Jul 08 2024
%E A374417 a(28)-a(39) from _Michael S. Branicky_, Jul 10 2024