This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374420 #13 Jul 30 2024 15:35:42 %S A374420 0,0,0,1,1,1,5,4,3,2,20,15,11,8,6,84,64,49,38,30,24,424,340,276,227, %T A374420 189,159,135,2680,2256,1916,1640,1413,1224,1065,930,20544,17864,15608, %U A374420 13692,12052,10639,9415,8350,7420,182336,161792,143928,128320,114628,102576,91937,82522,74172,66752 %N A374420 Triangle T(n, k) for the number of permutations of symmetric group S_n with an odd number of non-fixed point cycles, without k <= n particular fixed points. %F A374420 T(n,k) = T(n,k-1) - T(n-1,k-1) with T(n,0) = A373340(n). %F A374420 T(n,k) = (1/2)*(Sum_{j=0..k} (-1)^j * binomial(k,j) * (n-j)! - 2^(n-k-1)*(2-n-k)). %F A374420 T(n,k) = (A047920(n, k) + 2^(n-k-1)*(n+k-2))/2. - _Peter Luschny_, Jul 28 2024 %e A374420 Triangle array T(n,k) %e A374420 n: {k<=n} %e A374420 0: {0} %e A374420 1: {0, 0} %e A374420 2: {1, 1, 1} %e A374420 3: {5, 4, 3, 2} %e A374420 4: {20, 15, 11, 8, 6} %e A374420 5: {84, 64, 49, 38, 30, 24} %e A374420 6: {424, 340, 276, 227, 189, 159, 135} %e A374420 7: {2680, 2256, 1916, 1640, 1413, 1224, 1065, 930} %e A374420 T(n,0) = A373340(n) = the number of permutations in S_n without k=0 particular fixed points (i.e., not filtered, so all permutations) with an odd number of cycles. %e A374420 T(n,n) = A216779(n) = the number of permutations in S_n without k=n particular fixed points (i.e., filtered down to just the derangements) with an odd number of cycles. %e A374420 T(2,k) = 1 because S_2 contains 1 permutation with an odd number of non-fixed point cycles without k=0,1 or 2 particular fixed points, namely the derangement (12). %e A374420 T(3,2) = 3 because S_3 contains 3 permutations with an odd number of non-fixed point cycles without k=2 particular fixed points: say, without fixed points (1) and (2), namely (12)(3), (123), (132). %t A374420 Table[Table[1/2*(Sum[(-1)^j*Binomial[k, j]*(n - j)!, {j, 0, k}] - 2^(n - k - 1)*(2 - n - k)), {k, 0, n}], {n, 0, 10}] %Y A374420 Cf. A047920, A062111, A047920. %Y A374420 Cf. A374419 (even case), A216779 (main diagonal), A373340 (first column). %K A374420 nonn,tabl %O A374420 0,7 %A A374420 _Julian Hatfield Iacoponi_, Jul 08 2024