This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374427 #15 Aug 30 2024 10:41:31 %S A374427 1,1,1,2,3,5,6,10,17,29,24,42,74,131,233,120,216,390,706,1281,2329, %T A374427 720,1320,2424,4458,8210,15139,27949,5040,9360,17400,32376,60294, %U A374427 112378,209617,391285,40320,75600,141840,266280,500184,940074,1767770,3325923,6260561 %N A374427 Triangle read by rows: T(n, k) = n! * 2^k * hypergeom([-k], [-n], -1/2). %F A374427 T(n, k) = (-1)^k*Sum_{j=0..k} (-2)^(k - j)*binomial(k, k - j)*(n - j)!. - _Detlef Meya_, Aug 12 2024 %e A374427 1 %e A374427 1 1 %e A374427 2 3 5 %e A374427 6 10 17 29 %e A374427 24 42 74 131 233 %e A374427 120 216 390 706 1281 2329 %e A374427 720 1320 2424 4458 8210 15139 27949 %e A374427 5040 9360 17400 32376 60294 112378 209617 391285 %e A374427 40320 75600 141840 266280 500184 940074 1767770 3325923 6260561 %e A374427 362880 685440 1295280 2448720 4631160 8762136 16584198 31400626 59475329 %p A374427 A374427 := proc(n,k) %p A374427 (-1)^k*add((-2)^(k-j)*binomial(k,k-j)*(n-j)!,j=0..k) ; %p A374427 end proc: %p A374427 seq(seq(A374427(n,k),k=0..n),n=0..12) ; # _R. J. Mathar_, Aug 30 2024 %t A374427 T[n_, k_] := n! 2^k Hypergeometric1F1[-k, -n, -1/2]; %t A374427 (* Alternative: ) %t A374427 T[n_, k_] := (-1)^k*Sum[(-2)^(k - j)*Binomial[k, k - j]*((n - j)!), {j, 0, k}]; %t A374427 Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* _Detlef Meya_, Aug 12 2024 *) %Y A374427 Cf. A000354 (main diagonal), A374428, A007680 (col k=0). %K A374427 nonn,tabl %O A374427 0,4 %A A374427 _Peter Luschny_, Jul 28 2024