A374429 Triangle read by rows: T(n, k) = ((3*(-1)^k + 1)/2)*abs(qStirling2(n, k, -1)). Polynomials related to the Lucas and Fibonacci numbers.
2, 0, -1, 0, -1, 2, 0, -1, 2, -1, 0, -1, 2, -2, 2, 0, -1, 2, -3, 4, -1, 0, -1, 2, -4, 6, -3, 2, 0, -1, 2, -5, 8, -6, 6, -1, 0, -1, 2, -6, 10, -10, 12, -4, 2, 0, -1, 2, -7, 12, -15, 20, -10, 8, -1, 0, -1, 2, -8, 14, -21, 30, -20, 20, -5, 2
Offset: 0
Examples
Triangle starts: [0] [2] [1] [0, -1] [2] [0, -1, 2] [3] [0, -1, 2, -1] [4] [0, -1, 2, -2, 2] [5] [0, -1, 2, -3, 4, -1] [6] [0, -1, 2, -4, 6, -3, 2] [7] [0, -1, 2, -5, 8, -6, 6, -1] [8] [0, -1, 2, -6, 10, -10, 12, -4, 2] [9] [0, -1, 2, -7, 12, -15, 20, -10, 8, -1] . Table of interpolated sequences: | | A039834 & A000045 | A000032 | A000129 | A048654 | | n | P(n, 1) | P(n,-1) |-2^nP(n,1/2)|2^nP(n,-1/2)| | | Fibonacci | Lucas | Pell | Pell* | | 1 | -1 | 1 | 1 | 1 | | 2 | 1 | 3 | 0 | 4 | | 3 | 0 | 4 | 1 | 9 | | 4 | 1 | 7 | 2 | 22 | | 5 | 1 | 11 | 5 | 53 | | 6 | 2 | 18 | 12 | 128 | | 7 | 3 | 29 | 29 | 309 | | 8 | 5 | 47 | 70 | 746 | | 9 | 8 | 76 | 169 | 1801 | | 10 | 13 | 123 | 408 | 4348 |
Crossrefs
Programs
-
SageMath
from sage.combinat.q_analogues import q_stirling_number2 def T(n, k): return ((3*(-1)^k + 1)//2)*abs(q_stirling_number2(n, k, -1)) for n in range(10): print([T(n, k) for k in range(n + 1)]) def P(n, x): if n < 0: return P(-n, -x) return sum(T(n, k)*x^k for k in range(n + 1)) # Lucas and Fibonacci combined print([P(n, 1) for n in range(-6, 9)]) # Table of interpolated sequences print("| | A039834 & A000045 | A000032 | A000129 | A048654 |") print("| n | P(n, 1) | P(n,-1) |-2^nP(n,1/2)|2^nP(n,-1/2)|") f = "| {0:2d} | {1:9d} | {2:4d} | {3:7d} | {4:7d} |" for n in range(1, 11): print(f.format(n, P(n, 1), P(n, -1), int(-2**n*P(n, 1/2)), int(2**n*P(n, -1/2))))
Comments