This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374436 #16 Jul 13 2024 10:12:54 %S A374436 1,1,1,2,2,2,3,3,6,3,2,2,2,6,2,5,5,10,15,10,5,6,6,6,6,6,30,6,7,7,14, %T A374436 21,14,35,42,7,2,2,2,6,2,10,6,14,2,3,3,6,3,6,15,6,21,6,3,10,10,10,30, %U A374436 10,10,30,70,10,30,10,11,11,22,33,22,55,66,77,22,33,110,11 %N A374436 Triangle read by rows: T(n, k) = Product_{p in PF(n) union PF(k)} p, where PF(a) is the set of the prime factors of a. %F A374436 T(0,0) = T(n,0) = 1; T(n,k) = rad(k*n) where rad = A007947. - _Michael De Vlieger_, Jul 11 2024 %e A374436 [ 0] 1; %e A374436 [ 1] 1, 1; %e A374436 [ 2] 2, 2, 2; %e A374436 [ 3] 3, 3, 6, 3; %e A374436 [ 4] 2, 2, 2, 6, 2; %e A374436 [ 5] 5, 5, 10, 15, 10, 5; %e A374436 [ 6] 6, 6, 6, 6, 6, 30, 6; %e A374436 [ 7] 7, 7, 14, 21, 14, 35, 42, 7; %e A374436 [ 8] 2, 2, 2, 6, 2, 10, 6, 14, 2; %e A374436 [ 9] 3, 3, 6, 3, 6, 15, 6, 21, 6, 3; %e A374436 [10] 10, 10, 10, 30, 10, 10, 30, 70, 10, 30, 10; %e A374436 [11] 11, 11, 22, 33, 22, 55, 66, 77, 22, 33, 110, 11; %p A374436 PF := n -> ifelse(n = 0, {}, NumberTheory:-PrimeFactors(n)): %p A374436 A374436 := (n, k) -> mul(PF(n) union PF(k)): %p A374436 seq(print(seq(A374436(n, k), k = 0..n)), n = 0..11); %t A374436 nn = 12; Do[Set[s[i], FactorInteger[i][[All, 1]]], {i, 0, nn}]; s[0] = {1}; Table[Apply[Times, Union[s[k], s[n]]], {n, 0, nn}, {k, 0, n}] // Flatten (* _Michael De Vlieger_, Jul 11 2024 *) %o A374436 (Python) # Function A374436 defined in A374433. %o A374436 for n in range(12): print([A374436(n, k) for k in range(n + 1)]) %Y A374436 Family: A374433 (intersection), A374434 (symmetric difference), A374435 (difference), this sequence (union). %Y A374436 Cf. A007947 (column 0, main diagonal), A099985 (central terms). %K A374436 nonn,tabl %O A374436 0,4 %A A374436 _Peter Luschny_, Jul 10 2024