This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374438 #14 Jul 22 2024 08:18:56 %S A374438 1,1,2,1,2,3,1,2,3,2,1,2,3,4,3,1,2,3,6,6,2,1,2,3,8,9,6,3,1,2,3,10,12, %T A374438 12,9,2,1,2,3,12,15,20,18,8,3,1,2,3,14,18,30,30,20,12,2,1,2,3,16,21, %U A374438 42,45,40,30,10,3,1,2,3,18,24,56,63,70,60,30,15,2 %N A374438 Triangle read by rows: T(n, k) = T(n - 1, k) + T(n - 2, k - 2), with initial values T(n, k) = k + 1 for k < 3. %C A374438 See A374439 and the cross-references for comments about this family of triangles, where the recurrence is defined as in the name, but with an additional parameter m for the initial values: T(n, k) = k + 1 for k < m. %C A374438 As m -> oo, the rows of the triangles become the initial segments of the integers. %e A374438 Triangle starts: %e A374438 [ 0] [1] %e A374438 [ 1] [1, 2] %e A374438 [ 2] [1, 2, 3] %e A374438 [ 3] [1, 2, 3, 2] %e A374438 [ 4] [1, 2, 3, 4, 3] %e A374438 [ 5] [1, 2, 3, 6, 6, 2] %e A374438 [ 6] [1, 2, 3, 8, 9, 6, 3] %e A374438 [ 7] [1, 2, 3, 10, 12, 12, 9, 2] %e A374438 [ 8] [1, 2, 3, 12, 15, 20, 18, 8, 3] %e A374438 [ 9] [1, 2, 3, 14, 18, 30, 30, 20, 12, 2] %e A374438 [10] [1, 2, 3, 16, 21, 42, 45, 40, 30, 10, 3] %p A374438 M := 3; # family index %p A374438 T := proc(n, k) option remember; if k > n then 0 elif k < M then k + 1 else %p A374438 T(n - 1, k) + T(n - 2, k - 2) fi end: %p A374438 seq(seq(T(n, k), k = 0..n), n = 0..11); %o A374438 (Python) %o A374438 from functools import cache %o A374438 @cache %o A374438 def T(n: int, k: int) -> int: %o A374438 if k > n: return 0 %o A374438 if k < 3: return k + 1 %o A374438 return T(n - 1, k) + T(n - 2, k - 2) %Y A374438 Family of triangles: A162515 (m=1, Fibonacci), A374439 (m=2, Lucas), this triangle (m=3). %Y A374438 Row sums: A187890 (apart from initial terms), also A001060 + 1 (with 1 prepended). %Y A374438 Cf. A006355 (odd sums), A187893 (even sums). %Y A374438 Cf. related to deltas: A065220, A210673. %K A374438 nonn,tabl %O A374438 0,3 %A A374438 _Peter Luschny_, Jul 22 2024