This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374440 #15 Mar 30 2025 04:24:32 %S A374440 1,1,0,1,1,1,1,2,1,0,1,3,1,1,1,1,4,1,3,2,0,1,5,1,6,3,1,1,1,6,1,10,4,4, %T A374440 3,0,1,7,1,15,5,10,6,1,1,1,8,1,21,6,20,10,5,4,0,1,9,1,28,7,35,15,15, %U A374440 10,1,1,1,10,1,36,8,56,21,35,20,6,5,0 %N A374440 Triangle read by rows: T(n, k) = T(n - 1, k) + T(n - 2, k - 2), with boundary conditions: if k = 0 or k = 2 then T = 1; if k = 1 then T = n - 1. %C A374440 Member of the family of Lucas-Fibonacci polynomials. %F A374440 T(n, k) = binomial(n - floor(k/2), ceiling(k/2)) - binomial(n - ceiling((k + even(k))/2), floor(k/2)) if k > 0, T(n, 0) = 1, where even(k) = 1 if k is even, otherwise 0. %F A374440 Columns with odd index agree with the odd indexed columns of A374441. %e A374440 Triangle starts: %e A374440 [ 0] 1; %e A374440 [ 1] 1, 0; %e A374440 [ 2] 1, 1, 1; %e A374440 [ 3] 1, 2, 1, 0; %e A374440 [ 4] 1, 3, 1, 1, 1; %e A374440 [ 5] 1, 4, 1, 3, 2, 0; %e A374440 [ 6] 1, 5, 1, 6, 3, 1, 1; %e A374440 [ 7] 1, 6, 1, 10, 4, 4, 3, 0; %e A374440 [ 8] 1, 7, 1, 15, 5, 10, 6, 1, 1; %e A374440 [ 9] 1, 8, 1, 21, 6, 20, 10, 5, 4, 0; %e A374440 [10] 1, 9, 1, 28, 7, 35, 15, 15, 10, 1, 1; %p A374440 T := proc(n, k) option remember; if k = 0 or k = 2 then 1 elif k > n then 0 %p A374440 elif k = 1 then n - 1 else T(n - 1, k) + T(n - 2, k - 2) fi end: %p A374440 seq(seq(T(n, k), k = 0..n), n = 0..9); %p A374440 T := (n, k) -> ifelse(k = 0, 1, binomial(n - floor(k/2), ceil(k/2)) - %p A374440 binomial(n - ceil((k + irem(k + 1, 2))/2), floor(k/2))): %Y A374440 Cf. A374441. %Y A374440 Cf. A000032 (Lucas), A001611 (even sums, Fibonacci + 1), A000071 (odd sums, Fibonacci - 1), A001911 (alternating sums, Fibonacci(n+3) - 2), A025560 (row lcm), A073028 (row max), A117671 & A025174 (central terms), A057979 (subdiagonal), A000217 (column 3). %K A374440 nonn,tabl %O A374440 0,8 %A A374440 _Peter Luschny_, Jul 21 2024