A374441 Triangle read by rows: T(n, k) = binomial(n - floor(k/2), ceiling(k/2)) - binomial(n - ceiling(k/2), floor(k/2)).
0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 3, 0, 1, 0, 0, 4, 0, 3, 0, 0, 0, 5, 0, 6, 0, 1, 0, 0, 6, 0, 10, 0, 4, 0, 0, 0, 7, 0, 15, 0, 10, 0, 1, 0, 0, 8, 0, 21, 0, 20, 0, 5, 0, 0, 0, 9, 0, 28, 0, 35, 0, 15, 0, 1, 0, 0, 10, 0, 36, 0, 56, 0, 35, 0, 6, 0, 0, 0, 11, 0, 45, 0, 84, 0, 70, 0, 21, 0, 1, 0
Offset: 0
Examples
Triangle starts: [ 0] 0; [ 1] 0, 0; [ 2] 0, 1, 0; [ 3] 0, 2, 0, 0; [ 4] 0, 3, 0, 1, 0; [ 5] 0, 4, 0, 3, 0, 0; [ 6] 0, 5, 0, 6, 0, 1, 0; [ 7] 0, 6, 0, 10, 0, 4, 0, 0; [ 8] 0, 7, 0, 15, 0, 10, 0, 1, 0; [ 9] 0, 8, 0, 21, 0, 20, 0, 5, 0, 0; [10] 0, 9, 0, 28, 0, 35, 0, 15, 0, 1, 0;
Links
- Paolo Xausa, Table of n, a(n) for n = 0..11475 (rows 0..150 of triangle, flattened).
- Henry W. Gould, A Variant of Pascal's Triangle, The Fibonacci Quarterly, Vol. 3, Nr. 4, Dec. 1965, pp. 257-271, with corrections.
Crossrefs
Programs
-
Maple
T := (n, k) -> if k::even then 0 else binomial(n - (k + 1)/2, (k + 1)/2) fi: # Or as a recurrence: T := proc(n, k) option remember; if k::even or k > n then 0 elif k = 1 then n - 1 else T(n - 1, k) + T(n - 2, k - 2) fi end: seq(seq(T(n, k), k = 0..n), n = 0..12);
-
Mathematica
A374441[n_, k_] := If[OddQ[k], Binomial[n - (k + 1)/2, (k + 1)/2], 0]; Table[A374441[n, k], {n, 0, 15}, {k, 0, n}] (* Paolo Xausa, Nov 16 2024 *)
-
Python
from math import isqrt, comb def A374441(n): a = (m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)) b = n-comb(a+1,2) return comb(a-(b+1>>1),b+1>>1) if b&1 else 0 # Chai Wah Wu, Nov 14 2024
-
Python
from math import comb as binomial def row(n: int) -> list[int]: return [binomial(n - (k+1)//2, (k+1)//2) if k%2 else 0 for k in range(n+1)] for n in range(11): print(row(n)) # Peter Luschny, Nov 21 2024
Formula
T(n, k) = [x^(n-k)][z^n] (x / (1 - x*z - z^2)).
T(n, k) = binomial(n - (k + 1)/2, (k + 1)/2) if k is odd, and otherwise 0.
Sum_{k=0..n} T(n, k) = Fibonacci(n + 1) - 1.
Columns with odd index agree with the odd indexed columns of A374440.
Comments