This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374443 #10 Jun 22 2025 02:57:40 %S A374443 1,1,1,2,1,2,3,1,1,3,2,1,2,1,2,5,1,1,1,1,5,6,1,2,3,2,1,6,7,1,1,1,1,1, %T A374443 1,7,2,1,2,1,2,1,2,1,2,3,1,1,3,1,1,3,1,1,3,10,1,2,1,2,5,2,1,2,1,10,11, %U A374443 1,1,1,1,1,1,1,1,1,1,11,6,1,2,3,2,1,6,1,2,3,2,1,6 %N A374443 Triangle read by rows: T(n, k) = rad(gcd(n, k)) if n, k > 0, T(0, 0) = 1, where rad = A007947 and gcd = A109004. %e A374443 Triangle starts: %e A374443 [ 0] 1; %e A374443 [ 1] 1, 1; %e A374443 [ 2] 2, 1, 2; %e A374443 [ 3] 3, 1, 1, 3; %e A374443 [ 4] 2, 1, 2, 1, 2; %e A374443 [ 5] 5, 1, 1, 1, 1, 5; %e A374443 [ 6] 6, 1, 2, 3, 2, 1, 6; %e A374443 [ 7] 7, 1, 1, 1, 1, 1, 1, 7; %e A374443 [ 8] 2, 1, 2, 1, 2, 1, 2, 1, 2; %e A374443 [ 9] 3, 1, 1, 3, 1, 1, 3, 1, 1, 3; %e A374443 [10] 10, 1, 2, 1, 2, 5, 2, 1, 2, 1, 10; %e A374443 [11] 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11; %p A374443 rad := n -> ifelse(n = 0, 1, NumberTheory:-Radical(n)): %p A374443 T := (n, k) -> rad(igcd(n, k)); seq(seq(T(n, k), k = 0..n), n = 0..11); %t A374443 rad[n_] := If[n == 0, 1, Product[p, {p, Select[Divisors[n], PrimeQ]}]]; %t A374443 T[n_, k_] := rad[GCD[n, k]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten %o A374443 (Python) %o A374443 from math import gcd, prod %o A374443 from sympy.ntheory import primefactors %o A374443 def T(n, k) -> int: return prod(primefactors(gcd(n, k))) %o A374443 for n in range(16): print([T(n, k) for k in range(n+1)]) # _Peter Luschny_, Jun 22 2025 %Y A374443 Variant: A374433. %Y A374443 Cf. A374442 (row sums), A007947, A109004. %K A374443 nonn,tabl %O A374443 0,4 %A A374443 _Peter Luschny_ and _Michael De Vlieger_, Jul 12 2024