This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374449 #13 Jul 10 2024 18:42:09 %S A374449 5,2,4,9,33,8,27,170,1083,602,2522,211673,16,135,1274,4023,12122, %T A374449 204323,355923,6612470,3405122,49799889,202536181,3195380868, %U A374449 5208143601 %N A374449 Triangle read by rows: T(m,k) is the first number that starts a sequence of exactly k consecutive numbers with m prime factors, counted with multiplicity, if such a sequence is possible. %C A374449 For m > 1, row m can have at most 2^m - 1 terms, because one out of every 2^m consecutive numbers is divisible by 2^m. %C A374449 T(4,15) = A117969(4) = 97524222465. %F A374449 T(m,1) = 2^m for m >= 2. %e A374449 Triangle starts %e A374449 5 2 %e A374449 4 9 33 %e A374449 8 27 170 1083 603 3533 211673 %e A374449 T(3,2) = 27 because 27 = 3^3 and 28 = 2^2 * 7 each have 3 prime factors (counted with multiplicity) while 26 = 2*13 and 29 (prime) do not. %p A374449 f:= proc(n) %p A374449 uses priqueue; %p A374449 local V,L, count, T, v, j, q, p, TP; %p A374449 V:= Vector(2^n-1); count:= 0; %p A374449 L:= [(-1)$(2^n),2^n]; %p A374449 initialize(pq); %p A374449 insert([-2^(n),2$n],pq); %p A374449 while count < 2^n-1 do %p A374449 T:= extract(pq); v:= -T[1]; %p A374449 if L[-1] <> v-1 then %p A374449 for j from 1 while L[-1]-L[-j] = j-1 do %p A374449 if L[-j]-L[-j-1] <> 1 and V[j] = 0 then %p A374449 V[j]:= L[-j]; count:= count+1; %p A374449 fi od fi; %p A374449 L:= [op(L[2..-1]),v]; %p A374449 q:= T[-1]; %p A374449 p:= nextprime(q); %p A374449 for j from n+1 to 2 by -1 do %p A374449 if T[j] <> q then break fi; %p A374449 TP:= [T[1]*(p/q)^(n+2-j), op(T[2..j-1]), p$(n+2-j)]; %p A374449 insert(TP,pq); %p A374449 od od; %p A374449 op(convert(V,list)); %p A374449 end proc: %p A374449 f(1):= 5,2: %p A374449 seq(f(i),i=1..3); %Y A374449 Cf. A000079 (first column except for row 1), A115186, A113752, A117969 (last term in each row). %K A374449 nonn,tabf,more %O A374449 1,1 %A A374449 _Robert Israel_, Jul 08 2024