cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374451 Triangle T(n, k), n > 1, k = 1..n-1, read by rows; T(n, k) is the least prime number p such that the p-adic valuations of n and k differ.

Original entry on oeis.org

2, 3, 2, 2, 2, 2, 5, 2, 3, 2, 2, 3, 2, 2, 2, 7, 2, 3, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 11, 2, 3, 2, 5, 2, 7, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 13, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 2, 7, 2, 2, 2, 3, 2, 2, 2, 5, 2, 2, 2
Offset: 2

Views

Author

Rémy Sigrist, Jul 08 2024

Keywords

Examples

			Triangle T(n, k) begins:
  n   n-th row
  --  -------------------------------
   2  2
   3  3, 2
   4  2, 2, 2
   5  5, 2, 3, 2
   6  2, 3, 2, 2, 2
   7  7, 2, 3, 2, 5, 2
   8  2, 2, 2, 2, 2, 2, 2
   9  3, 2, 3, 2, 3, 2, 3, 2
  10  2, 5, 2, 2, 2, 3, 2, 2, 2
  11  11, 2, 3, 2, 5, 2, 7, 2, 3, 2
  12  2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2
		

Crossrefs

Programs

  • PARI
    T(n, k) = { forprime (p = 2, oo, my (d = valuation(n, p) - valuation(k, p)); if (d, return (p););); }

Formula

T(n, 1) = A020639(n).
T(n, n-1) = 2.
T(2^n, k) = 2.
T(p, k) = A020639(k) for any prime number p and k > 1.