A374462 Triangle T(n, k), n > 1, k = 1..n-1, read by rows; T(n, k) equals the p-adic valuation of n minus the p-adic valuation of k where p is the least prime number such that this quantity is nonzero.
1, 1, -1, 2, 1, 2, 1, -1, -1, -2, 1, 1, 1, -1, 1, 1, -1, -1, -2, -1, -1, 3, 2, 3, 1, 3, 2, 3, 2, -1, 1, -2, 2, -1, 2, -3, 1, 1, 1, -1, 1, -1, 1, -2, 1, 1, -1, -1, -2, -1, -1, -1, -3, -2, -1, 2, 1, 2, 1, 2, 1, 2, -1, 2, 1, 2, 1, -1, -1, -2, -1, -1, -1, -3, -2, -1, -1, -2
Offset: 2
Examples
Triangle T(n, k) begins: n n-th row -- ------------------------------------- 2 1 3 1, -1 4 2, 1, 2 5 1, -1, -1, -2 6 1, 1, 1, -1, 1 7 1, -1, -1, -2, -1, -1 8 3, 2, 3, 1, 3, 2, 3 9 2, -1, 1, -2, 2, -1, 2, -3 10 1, 1, 1, -1, 1, -1, 1, -2, 1 11 1, -1, -1, -2, -1, -1, -1, -3, -2, -1 12 2, 1, 2, 1, 2, 1, 2, -1, 2, 1, 2
Links
- Rémy Sigrist, Scatterplot of (x, y) such that T(x, y) > 0 and x <= 2^9
Programs
-
PARI
T(n, k) = { forprime (p = 2, oo, my (d = valuation(n, p) - valuation(k, p)); if (d, return (d); ); ); }
Comments