cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374489 a(n) = floor(Sum_{k=n^4..(n+1)^4} k^(1/4)).

This page as a plain text file.
%I A374489 #28 Nov 07 2024 17:42:03
%S A374489 1,26,171,628,1685,3726,7231,12776,21033,32770,48851,70236,97981,
%T A374489 133238,177255,231376,297041,375786,469243,579140,707301,855646,
%U A374489 1026191,1221048,1442425,1692626,1974051,2289196,2640653,3031110,3463351,3940256,4464801,5040058,5669195
%N A374489 a(n) = floor(Sum_{k=n^4..(n+1)^4} k^(1/4)).
%H A374489 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).
%F A374489 a(n) = 4*n^4+8*n^3+8*n^2+5*n+1.
%F A374489 From _Stefano Spezia_, Jul 09 2024: (Start)
%F A374489 G.f.: (1 + 21*x + 51*x^2 + 23*x^3)/(1 - x)^5.
%F A374489 E.g.f.: exp(x)*(1 + 25*x + 60*x^2 + 32*x^3 + 4*x^4). (End)
%t A374489 LinearRecurrence[{5,-10,10,-5,1},{1,26,171,628,1685},40] (* _Harvey P. Dale_, Nov 07 2024 *)
%Y A374489 Cf. A248698, A248575, A374384.
%K A374489 nonn,easy
%O A374489 0,2
%A A374489 _Amrit Awasthi_, Jul 09 2024