A374494 a(n) = A373498(A373498(n)).
1, 2, 3, 9, 4, 6, 7, 8, 5, 10, 18, 13, 20, 11, 15, 16, 17, 14, 19, 12, 21, 31, 26, 33, 24, 35, 22, 28, 29, 30, 27, 32, 25, 34, 23, 36, 48, 43, 50, 41, 52, 39, 54, 37, 45, 46, 47, 44, 49, 42, 51, 40, 53, 38, 55
Offset: 1
Examples
Triangle begins: k = 1 2 3 4 5 6 7 8 9 10 11 n=1: 1, 2, 3; n=2: 9, 4, 6, 7, 8, 5, 10; n=3: 18, 13, 20, 11, 15, 16, 17, 14, 19, 12, 21; The triangle's rows can be arranged as two successive upward antidiagonals in an array: 1, 3, 6, 10, 15, 21, ... 2, 4, 5, 11, 12, 22, ... 9, 8, 20, 19, 35, 34, ... 7, 13, 14, 24, 25, 39, ... 18, 17, 33, 32, 52, 51, ... 16, 26, 27, 41, 42, 60, ... Subtracting (n-1)*(2*n-1) from each term in row n is a permutation of 1 .. 4*n-1: 1,2,3, 6,1,3,4,5,2,7, 8,3,10,1,5,6,7,4,9,2,11 ... The 2nd power of each permutation in example A373498 is equal to the corresponding permutation above: (2,1,3)^2 = (1,2,3), (2,6,4,3,5,1,7)^2 = (6,1,3,4,5,2,7), (2,8,4,10,6,5,7,3,9,1,11)^2 = (8,3,10,1,5,6,7,4,9,2,11).
Links
- Boris Putievskiy, Table of n, a(n) for n = 1..9870
- Boris Putievskiy, Integer Sequences: Irregular Arrays and Intra-Block Permutations, arXiv:2310.18466 [math.CO], 2023.
- Index entries for sequences that are permutations of the natural numbers.
Programs
-
Mathematica
Nmax=21; a[n_]:=Module[{L,R,P,Result},L=Ceiling[(Sqrt[8*n+1]-1)/4]; R=n-(L-1)*(2*L-1); P=Which[R<=2*L-1&&Mod[R,2]==1,R+1,R<=2*L-1&&Mod[R,2]==0,R+2*L,R>2*L-1&&Mod[R,2]==1,R,R>2*L-1&&Mod[R,2]==0,4*L-1-R]; Result=P+(L-1)*(2*L-1); Result] Table[a[n],{n,1,Nmax}] (* A373498 *) Table[a[a[n]],{n,1,Nmax}] (* this sequence *) Nmax = 21; a[n_] := Module[{L, R, P, Result}, L = Ceiling[(Sqrt[8*n + 1] - 1)/4]; R = n - (L - 1)*(2*L - 1); P = Which[R < 2*L - 1 && Mod[R, 2] == 1, 2*L + R + 1, R < 2*L - 1 && Mod[R, 2] == 0, 2*L - R - 1, R >= 2*L - 1 && Mod[R, 2] == 1, R, R >= 2*L - 1 && Mod[R, 2] == 0, 4*L - R]; Result = P + (L - 1)*(2*L - 1); Result] Table[a[n], {n, 1, Nmax}]
Formula
Linear sequence:
a(n) = P(n) + (L(n)-1)*(2*L(n)-1), where L(n) = ceiling((sqrt(8*n+1)-1)/4),
L(n) = A204164(n), R(n) = n - (L(n)-1)*(2*L(n)-1), P(n) = 2*L(n) + R(n) + 1 if R(n) < 2*L(n)-1 and R(n) mod 2 = 1, P(n) = 2*L(n) - R(n) - 1 if R(n) < 2*L(n)-1 and R(n) mod 2 = 0, P(n) = R(n) if R(n) >= 2*L(n)-1 and R(n) mod 2 = 1, P(n) = 4*L(n) - R(n) if R(n) >= 2*L(n)-1 and R(n) mod 2 = 0.
Triangular array T(n,k) for 1 <= k <= 4*n-1 (see Example):
T(n,k) = (n-1)*(2*n-1) + P(n,k), where P(n,k) = 2*n + k + 1 if k < 2*n-1 and k mod 2 = 1, P(n,k) = 2*n - k - 1 if k < 2*n-1 and k mod 2 = 0, P(n,k) = k if k >= 2*n-1 and k mod 2 = 1, P(n,k) = 4*n - k if k >= 2*n-1 and k mod 2 = 0.
Comments