This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374505 #38 Aug 03 2024 11:41:54 %S A374505 0,0,1,4,8,14,21,29,40,52,65,81,97,116,135,156,180,203,229,258,286, %T A374505 317,350,383,419,455,495,536,575,620,664,711,761,808,860,916,966,1024, %U A374505 1079,1140,1200,1261,1326,1391,1458,1528,1595,1666,1741,1814,1892,1972 %N A374505 Maximum number of unit squares aligned with unit-spaced horizontal lines that can be enclosed by a circle of diameter n. %C A374505 It is conjectured that this construction gives the maximal number of axis-parallel unit squares that can be packed into a circle of diameter n. %C A374505 From the Erich Friedman website the best known maximum number of unit squares enclosed by a circle of diameter n are for n >= 2: 1, 4, 8, 14, 21, 30, ... (this sequence has not been included in OEIS because the terms have not been proven optimal). The unit squares in this case are not required to be axis-parallel. However, the example of 30 axis-parallel squares enclosed in a circle of radius < 3.5 shows that if holes are allowed, better packings are possible than with the restricted case. - _Andrew Howroyd_, Jul 14 2024 %H A374505 David Dewan, <a href="/A374505/b374505.txt">Table of n, a(n) for n = 0..2000</a> %H A374505 David Dewan, <a href="/A374505/a374505.pdf">Computing Maximal Unit Squares in a Circle</a>. %H A374505 Erich Friedman, <a href="https://erich-friedman.github.io/packing/squincir/">Squares in Circles</a>. %F A374505 a(2*n) <= A124484(n). %e A374505 For a circle with diameter = 4: %e A374505 With center of circle at y = 0 (on line between rows) it encloses 6 squares. %e A374505 With center of circle at y = 2 - sqrt(3) ~= 0.268 it encloses 8 squares (maximal). %e A374505 With center of circle at y = 1/2 (in middle of row) it encloses 7 squares. %e A374505 So a(4) = 8. %t A374505 a[n_] := ( %t A374505 distances = N[Map[Sqrt[n^2 - #^2]/2 &, Range[n - 1]]]; %t A374505 topDeltas1 = Flatten[Map[# - distances &, Range[n/2]]]; %t A374505 topDeltas2 = Select[topDeltas1, 0 < # <= .5 &]; %t A374505 topDeltas3 = Map[{#, 1} &, topDeltas2]; %t A374505 btmDeltas1 = Flatten[Map[distances - # &, Range[n/2]]]; %t A374505 btmDeltas2 = Select[btmDeltas1, 0 <= # < .5 &]; %t A374505 btmDeltas3 = Map[{#, -1} &, btmDeltas2]; %t A374505 allDeltas4 = Join[topDeltas3, btmDeltas3, {{0, 0}}]; %t A374505 allDeltas5 = SortBy[allDeltas4, {First, -Last[#] &}] ; %t A374505 cumulativeChanges = Accumulate[allDeltas5[[All, 2]]]; %t A374505 startSqrs = 2 Sum[Floor[2 Sqrt[(n/2)^2 - k^2]], {k, n/2}]; %t A374505 Return[startSqrs + Max[cumulativeChanges]] ) %t A374505 Map[a[#] &, Range[0, 51]] (* this sequence *) %t A374505 Map[a[#] &, Range[0, 102, 2]] (* A124484, by radius *) %Y A374505 Cf. A124484, A256588 (unexpectedly similar). %K A374505 nonn %O A374505 0,4 %A A374505 _David Dewan_, Jul 09 2024