This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374506 #19 Aug 23 2025 09:52:57 %S A374506 1,7,42,210,966,4158,17094,67782,261261,983983,3635632,13217568, %T A374506 47393892,167919948,588772152,2045481480,7048466271,24111291897, %U A374506 81939285582,276810647190,930096277110,3109797881190,10350813392010,34309326304890,113288127469335 %N A374506 Expansion of 1/(1 - 2*x - 3*x^2)^(7/2). %F A374506 a(0) = 1, a(1) = 7; a(n) = ((2*n+5)*a(n-1) + 3*(n+5)*a(n-2))/n. %F A374506 a(n) = (binomial(n+6,3)/20) * Sum_{k=0..floor(n/2)} binomial(n+3,n-2*k) * binomial(2*k+3,k). %F A374506 a(n) = Pochhammer(n+1, 6)*hypergeom([(1-n)/2, -n/2], [4], 4)/6!. - _Stefano Spezia_, Jul 10 2024 %F A374506 a(n) = Sum_{k=0..n} (-2)^k * (3/2)^(n-k) * binomial(-7/2,k) * binomial(k,n-k). - _Seiichi Manyama_, Aug 23 2025 %t A374506 a[n_]:= Pochhammer[n+1, 6]*Hypergeometric2F1[(1-n)/2, -n/2, 4, 4]/6!; Array[a,25,0] (* _Stefano Spezia_, Jul 10 2024 *) %o A374506 (PARI) a(n) = binomial(n+6, 3)/20*sum(k=0, n\2, binomial(n+3, n-2*k)*binomial(2*k+3, k)); %Y A374506 Cf. A002426, A102839, A245551. %K A374506 nonn,changed %O A374506 0,2 %A A374506 _Seiichi Manyama_, Jul 09 2024