cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A374698 Numbers k such that the leaders of strictly increasing runs in the k-th composition in standard order are distinct.

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 8, 9, 12, 16, 17, 18, 20, 22, 24, 26, 32, 33, 34, 37, 38, 40, 41, 44, 48, 50, 52, 64, 65, 66, 68, 69, 70, 72, 76, 80, 81, 88, 96, 98, 100, 104, 128, 129, 130, 132, 133, 134, 137, 140, 144, 145, 148, 150, 152, 154, 160, 161, 164, 166, 176, 180
Offset: 1

Views

Author

Gus Wiseman, Jul 27 2024

Keywords

Comments

The leaders of strictly increasing runs in a sequence are obtained by splitting it into maximal strictly increasing subsequences and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The maximal strictly increasing subsequences of the 212th composition in standard order are ((1,2),(2,3)), with leaders (1,2), so 212 is in the sequence.
The terms together with corresponding compositions begin:
   0: ()
   1: (1)
   2: (2)
   4: (3)
   5: (2,1)
   6: (1,2)
   8: (4)
   9: (3,1)
  12: (1,3)
  16: (5)
  17: (4,1)
  18: (3,2)
  20: (2,3)
  22: (2,1,2)
  24: (1,4)
  26: (1,2,2)
		

Crossrefs

Positions of distinct (strict) rows in A374683.
For identical leaders we have A374685, counted by A374761.
Compositions of this type are counted by A374687.
The opposite version is A374767, counted by A374760.
The weak version is A374768, counted by A374632.
Other types of runs: A374249 (counts A274174), A374638 (counts A374518), A374701 (counts A374743).
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1) (or sometimes A070939).
- Parts are listed by A066099.
- Adjacent equal pairs are counted by A124762, unequal A333382.
- Number of max runs: A124765, A124766, A124767, A124768, A124769, A333381.
- Ranks of anti-run compositions are A333489, counted by A003242.
- Run-length transform is A333627.
- Run-compression transform is A373948, sum A373953, excess A373954.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],UnsameQ@@First/@Split[stc[#],Less]&]

A374685 Numbers k such that the leaders of strictly increasing runs in the k-th composition in standard order are identical.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 10, 12, 13, 14, 15, 16, 20, 24, 25, 27, 28, 29, 30, 31, 32, 36, 40, 42, 48, 49, 51, 52, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 72, 80, 82, 84, 96, 97, 99, 102, 103, 104, 105, 108, 109, 110, 111, 112, 113, 115, 116, 118, 119, 120, 121
Offset: 1

Views

Author

Gus Wiseman, Jul 27 2024

Keywords

Comments

The leaders of strictly increasing runs in a sequence are obtained by splitting it into maximal strictly increasing subsequences and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The maximal strictly increasing subsequences of the 6560th composition in standard order are ((1,3),(1,2,6)), with leaders (1,1), so 6560 is in the sequence.
The terms together with corresponding compositions begin:
   0: ()
   1: (1)
   2: (2)
   3: (1,1)
   4: (3)
   6: (1,2)
   7: (1,1,1)
   8: (4)
  10: (2,2)
  12: (1,3)
  13: (1,2,1)
  14: (1,1,2)
  15: (1,1,1,1)
  16: (5)
  20: (2,3)
  24: (1,4)
  25: (1,3,1)
  27: (1,2,1,1)
  28: (1,1,3)
  29: (1,1,2,1)
  30: (1,1,1,2)
  31: (1,1,1,1,1)
		

Crossrefs

The weak version is A374633, counted by A374631.
Positions of constant rows in A374683.
Compositions of this type are counted by A374686.
For distinct leaders we have A374698, counted by A374687.
The opposite version is A374759, counted by A374760.
Other types of runs: A272919 (counts A000005), A374519 (counts A374517), A374744 (counts A374742).
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A374748 counts compositions by sum of leaders of weakly decreasing runs.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1) (or sometimes A070939).
- Parts are listed by A066099.
- Adjacent equal pairs are counted by A124762, unequal A333382.
- Number of max runs: A124765, A124766, A124767, A124768, A124769, A333381.
- Ranks of anti-run compositions are A333489, counted by A003242.
- Run-length transform is A333627.
- Run-compression transform is A373948, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],SameQ@@First/@Split[stc[#],Less]&]

A374519 Numbers k such that the leaders of anti-runs in the k-th composition in standard order (A066099) are identical.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 44, 45, 48, 49, 50, 51, 52, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 72, 73, 76, 77, 80, 81, 82, 84, 85
Offset: 1

Views

Author

Gus Wiseman, Aug 01 2024

Keywords

Comments

The leaders of anti-runs in a sequence are obtained by splitting it into maximal consecutive anti-runs (sequences with no adjacent equal terms) and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The 346th composition in standard order is (2,2,1,2,2), with anti-runs ((2),(2,1,2),(2)), with leaders (2,2,2), so 346 is in the sequence.
		

Crossrefs

Positions of constant rows in A374515.
Compositions of this type are counted by A374517.
The complement is A374520.
For distinct instead of identical leaders we have A374638, counted by A374518.
Other types of runs (instead of anti-):
- For identical runs we have A272919, counted by A000005.
- For weakly increasing runs we have A374633, counted by A374631.
- For strictly increasing runs we have A374685, counted by A374686.
- For weakly decreasing runs we have A374744, counted by A374742.
- For strictly decreasing runs we have A374759, counted by A374760.
A065120 gives leaders of standard compositions.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs.
A238424 counts partitions whose first differences are an anti-run.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Anti-runs are ranked by A333489, counted by A003242.
- Run-length transform is A333627, sum A070939.
- Run-compression transform is A373948, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.
Six types of maximal runs:

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],SameQ@@First/@Split[stc[#],UnsameQ]&]

A374678 Number of integer compositions of n whose leaders of maximal anti-runs are not distinct.

Original entry on oeis.org

0, 0, 1, 1, 3, 7, 15, 32, 70, 144, 311, 653, 1354, 2820, 5850, 12054, 24810, 50923, 104206, 212841, 433919, 882930, 1793810, 3639248, 7373539, 14921986
Offset: 0

Views

Author

Gus Wiseman, Aug 06 2024

Keywords

Comments

The leaders of maximal anti-runs in a sequence are obtained by splitting it into maximal consecutive anti-runs (sequences with no adjacent equal terms) and taking the first term of each.

Examples

			The anti-runs of y = (1,1,2,2) are ((1),(1,2),(2)) with leaders (1,1,2) so y is counted under a(6).
The a(0) = 0 through a(6) = 15 compositions:
  .  .  (11)  (111)  (22)    (113)    (33)
                     (112)   (221)    (114)
                     (1111)  (1112)   (222)
                             (1121)   (1113)
                             (1211)   (1122)
                             (2111)   (1131)
                             (11111)  (1311)
                                      (2211)
                                      (3111)
                                      (11112)
                                      (11121)
                                      (11211)
                                      (12111)
                                      (21111)
                                      (111111)
		

Crossrefs

For constant runs we have A335548, complement A274174, ranks A374249.
The complement is counted by A374518, ranks A374638.
For weakly increasing runs we have complement A374632, ranks A374768.
Compositions of this type are ranked by A374639.
For identical instead of distinct leaders we have A374640, ranks A374520, complement A374517, ranks A374519.
A003242 counts anti-runs, ranks A333489.
A065120 gives leaders of standard compositions.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
A274174 counts contiguous compositions, ranks A374249.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],!UnsameQ@@First/@Split[#,UnsameQ]&]],{n,0,15}]

A374640 Number of integer compositions of n whose leaders of maximal anti-runs are not identical.

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 7, 18, 43, 96, 211, 463, 992, 2112, 4462, 9347, 19495, 40480, 83690, 172478, 354455, 726538, 1486024, 3033644, 6182389, 12580486
Offset: 0

Views

Author

Gus Wiseman, Aug 06 2024

Keywords

Comments

The leaders of maximal anti-runs in a sequence are obtained by splitting it into maximal consecutive anti-runs (sequences with no adjacent equal terms) and taking the first term of each.

Examples

			The a(0) = 0 through a(7) = 18 compositions:
  .  .  .  .  (211)  (122)   (411)    (133)
                     (311)   (1122)   (322)
                     (2111)  (1221)   (511)
                             (2112)   (1222)
                             (2211)   (2113)
                             (3111)   (2311)
                             (21111)  (3112)
                                      (3211)
                                      (4111)
                                      (11122)
                                      (11221)
                                      (12211)
                                      (21112)
                                      (21121)
                                      (21211)
                                      (22111)
                                      (31111)
                                      (211111)
		

Crossrefs

For partitions instead of compositions we have A239955.
The complement is counted by A374517, ranks A374519.
Compositions of this type are ranked by A374520, complement A374519.
For distinct instead of identical leaders we have A374678, ranks A374639, complement A374518, ranks A374638.
A003242 counts anti-runs, ranks A333489.
A065120 gives leaders of standard compositions.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
A274174 counts contiguous compositions, ranks A374249.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],!SameQ@@First/@Split[#,UnsameQ]&]],{n,0,15}]

A374639 Numbers k such that the leaders of maximal anti-runs in the k-th composition in standard order (A066099) are not distinct.

Original entry on oeis.org

3, 7, 10, 14, 15, 21, 23, 27, 28, 29, 30, 31, 36, 39, 42, 43, 47, 51, 55, 56, 57, 58, 59, 60, 61, 62, 63, 71, 73, 79, 84, 85, 86, 87, 90, 94, 95, 99, 103, 106, 107, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 135
Offset: 1

Views

Author

Gus Wiseman, Aug 06 2024

Keywords

Comments

The leaders of maximal anti-runs in a sequence are obtained by splitting it into maximal consecutive anti-runs (sequences with no adjacent equal terms) and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence of terms together with the corresponding compositions begins:
   3: (1,1)
   7: (1,1,1)
  10: (2,2)
  14: (1,1,2)
  15: (1,1,1,1)
  21: (2,2,1)
  23: (2,1,1,1)
  27: (1,2,1,1)
  28: (1,1,3)
  29: (1,1,2,1)
  30: (1,1,1,2)
  31: (1,1,1,1,1)
		

Crossrefs

First differs from A335466 in lacking 166, complement A335467.
The complement for leaders of identical runs is A374249, counted by A274174.
For leaders of identical runs we have A374253, counted by A335548.
Positions of non-distinct (or non-strict) rows in A374515.
The complement is A374638, counted by A374518.
For identical instead of non-distinct we have A374519, counted by A374517.
For identical instead of distinct we have A374520, counted by A374640.
Compositions of this type are counted by A374678.
Other functional neighbors are A374768, A374698, A374701, A374767.
A065120 gives leaders of standard compositions.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Anti-runs are ranked by A333489, counted by A003242.
- Run-length transform is A333627, sum A070939.
- Run-compression transform is A373948, sum A373953, excess A373954.
Six types of maximal runs:

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],!UnsameQ@@First/@Split[stc[#],UnsameQ]&]

A375397 Numbers divisible by the square of some prime factor other than the least. Non-hooklike numbers.

Original entry on oeis.org

18, 36, 50, 54, 72, 75, 90, 98, 100, 108, 126, 144, 147, 150, 162, 180, 196, 198, 200, 216, 225, 234, 242, 245, 250, 252, 270, 288, 294, 300, 306, 324, 338, 342, 350, 360, 363, 375, 378, 392, 396, 400, 414, 432, 441, 450, 468, 484, 486, 490, 500, 504, 507, 522
Offset: 1

Views

Author

Gus Wiseman, Aug 16 2024

Keywords

Comments

Contains no squarefree numbers A005117 or prime powers A000961, but some perfect powers A131605.
Also numbers k such that the minima of the maximal anti-runs in the weakly increasing sequence of prime factors of k (with multiplicity) are not identical. Here, an anti-run is a sequence with no adjacent equal parts, and the minima of the maximal anti-runs in a sequence are obtained by splitting it into maximal anti-run subsequences and taking the least term of each. Note the prime factors can alternatively be taken in weakly decreasing order.
Includes all terms of A036785 = non-products of a squarefree number and a prime power.
The asymptotic density of this sequence is 1 - (1/zeta(2)) * (1 + Sum_{p prime} (1/(p^2-p)) / Product_{primes q <= p} (1 + 1/q)) = 0.11514433883... . - Amiram Eldar, Oct 26 2024

Examples

			The prime factors of 300 are {2,2,3,5,5}, with maximal anti-runs ((2),(2,3,5),(5)), with minima (2,2,5), so 300 is in the sequence.
The terms together with their prime indices begin:
    18: {1,2,2}
    36: {1,1,2,2}
    50: {1,3,3}
    54: {1,2,2,2}
    72: {1,1,1,2,2}
    75: {2,3,3}
    90: {1,2,2,3}
    98: {1,4,4}
   100: {1,1,3,3}
   108: {1,1,2,2,2}
   126: {1,2,2,4}
   144: {1,1,1,1,2,2}
		

Crossrefs

A superset of A036785.
The complement for maxima is A065200, counted by A034296.
For maxima instead of minima we have A065201, counted by A239955.
A version for compositions is A374520, counted by A374640.
Also positions of non-constant rows in A375128, sums A374706, ranks A375400.
The complement is A375396, counted by A115029.
The complement for distinct minima is A375398, counted by A375134.
For distinct instead of identical minima we have A375399, counts A375404.
Partitions of this type are counted by A375405.
A000041 counts integer partitions, strict A000009.
A003242 counts anti-run compositions, ranks A333489.
A number's prime factors (A027746, reverse A238689) have sum A001414, min A020639, max A006530.
A number's prime indices (A112798, reverse A296150) have sum A056239, min A055396, max A061395.
Both have length A001222, distinct A001221.

Programs

  • Mathematica
    Select[Range[100],!SameQ@@Min /@ Split[Flatten[ConstantArray@@@FactorInteger[#]],UnsameQ]&]
  • PARI
    is(k) = if(k > 1, my(e = factor(k)[, 2]); vecprod(e) > e[1], 0); \\ Amiram Eldar, Oct 26 2024

Extensions

Name edited by Peter Munn, May 08 2025

A374699 Number of integer compositions of n whose leaders of maximal anti-runs are not weakly decreasing.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 2, 5, 14, 34, 78, 180, 407, 907, 2000, 4364, 9448, 20323, 43448, 92400, 195604, 412355, 866085, 1813035, 3783895, 7875552
Offset: 0

Views

Author

Gus Wiseman, Aug 06 2024

Keywords

Comments

The leaders of maximal anti-runs in a sequence are obtained by splitting it into maximal consecutive anti-runs (sequences with no adjacent equal terms) and taking the first term of each.

Examples

			The a(0) = 0 through a(8) = 14 compositions:
  .  .  .  .  .  (122)  (1122)  (133)    (233)
                        (1221)  (1222)   (1133)
                                (11122)  (1223)
                                (11221)  (1322)
                                (12211)  (1331)
                                         (11222)
                                         (12122)
                                         (12212)
                                         (12221)
                                         (21122)
                                         (111122)
                                         (111221)
                                         (112211)
                                         (122111)
		

Crossrefs

The complement is counted by A374682.
Other types of runs (instead of anti-):
- For leaders of identical runs we have A056823.
- For leaders of weakly increasing runs we have A374636, complement A189076?
- For leaders of strictly increasing runs: A375135, complement A374697.
Other types of run-leaders (instead of weakly decreasing):
- For identical leaders we have A374640, ranks A374520, complement A374517, ranks A374519.
- For distinct leaders we have A374678, ranks A374639, complement A374518, ranks A374638.
- For weakly increasing leaders we have complement A374681.
- For strictly increasing leaders we have complement complement A374679.
- For strictly decreasing leaders we have complement A374680.
A003242 counts anti-runs, ranks A333489.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
A238424 counts partitions whose first differences are an anti-run.
A274174 counts contiguous compositions, ranks A374249.
A333381 counts maximal anti-runs in standard compositions.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],!GreaterEqual@@First/@Split[#,UnsameQ]&]],{n,0,15}]

A375139 Numbers k such that the leaders of strictly increasing runs in the k-th composition in standard order are not weakly decreasing.

Original entry on oeis.org

26, 50, 53, 58, 90, 98, 100, 101, 106, 107, 114, 117, 122, 154, 164, 178, 181, 186, 194, 196, 197, 201, 202, 203, 210, 212, 213, 214, 215, 218, 226, 228, 229, 234, 235, 242, 245, 250, 282, 306, 309, 314, 324, 329, 346, 354, 356, 357, 362, 363, 370, 373, 378
Offset: 1

Views

Author

Gus Wiseman, Aug 12 2024

Keywords

Comments

The leaders of strictly increasing runs in a sequence are obtained by splitting it into maximal strictly increasing subsequences and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms together with corresponding compositions begin:
   26: (1,2,2)
   50: (1,3,2)
   53: (1,2,2,1)
   58: (1,1,2,2)
   90: (2,1,2,2)
   98: (1,4,2)
  100: (1,3,3)
  101: (1,3,2,1)
  106: (1,2,2,2)
  107: (1,2,2,1,1)
  114: (1,1,3,2)
  117: (1,1,2,2,1)
  122: (1,1,1,2,2)
  154: (3,1,2,2)
  164: (2,3,3)
  178: (2,1,3,2)
  181: (2,1,2,2,1)
  186: (2,1,1,2,2)
		

Crossrefs

For leaders of identical runs we have A335485.
Ranked by positions of non-weakly decreasing rows in A374683.
For identical leaders we have A374685, counted by A374686.
The complement is counted by A374697.
For distinct leaders we have A374698, counted by A374687.
Compositions of this type are counted by A375135.
Weakly increasing leaders: A375137, counts A374636, complement A189076.
Interchanging weak/strict: A375295, counted by A375140, complement A188920.
A003242 counts anti-run compositions, ranks A333489.
A374700 counts compositions by sum of leaders of strictly increasing runs.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1).
- Leader is A065120.
- Parts are listed by A066099.
- Strict compositions are A233564.
- Run-length transform is A333627, sum A070939.
- Run-compression transform is A373948, sum A373953, excess A373954.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],!GreaterEqual@@First/@Split[stc[#],Less]&]
Showing 1-9 of 9 results.