cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374521 Triangle read by rows where T(n,k) is the number of integer compositions of n whose leaders of anti-runs sum to k.

This page as a plain text file.
%I A374521 #6 Aug 05 2024 08:44:40
%S A374521 1,0,1,0,0,2,0,1,1,2,0,2,1,2,3,0,2,5,3,4,2,0,5,7,8,3,5,4,0,9,12,11,17,
%T A374521 5,8,2,0,14,26,23,22,24,6,9,4,0,25,42,54,41,36,36,7,12,3,0,46,76,88,
%U A374521 107,60,60,48,9,14,4
%N A374521 Triangle read by rows where T(n,k) is the number of integer compositions of n whose leaders of anti-runs sum to k.
%C A374521 The leaders of anti-runs in a sequence are obtained by splitting it into maximal consecutive anti-runs (sequences with no adjacent equal terms) and taking the first term of each.
%H A374521 Gus Wiseman, <a href="/A374629/a374629.txt">Sequences counting and ranking compositions by their leaders (for six types of runs)</a>.
%e A374521 Triangle begins:
%e A374521    1
%e A374521    0   1
%e A374521    0   0   2
%e A374521    0   1   1   2
%e A374521    0   2   1   2   3
%e A374521    0   2   5   3   4   2
%e A374521    0   5   7   8   3   5   4
%e A374521    0   9  12  11  17   5   8   2
%e A374521    0  14  26  23  22  24   6   9   4
%e A374521    0  25  42  54  41  36  36   7  12   3
%e A374521    0  46  76  88 107  60  60  48   9  14   4
%e A374521    0  78 144 166 179 176 101  83  68  10  17   2
%e A374521    0 136 258 327 339 311 299 139 122  81  12  18   6
%e A374521    0 242 457 602 704 591 544 447 198 165 109  12  23   2
%e A374521 Row n = 6 counts the following compositions:
%e A374521   .  (15)    (24)    (321)    (42)     (51)     (6)
%e A374521      (141)   (114)   (312)    (1122)   (411)    (33)
%e A374521      (132)   (231)   (1113)   (11112)  (3111)   (222)
%e A374521      (123)   (213)   (2112)            (2211)   (111111)
%e A374521      (1212)  (1311)  (1221)            (21111)
%e A374521              (1131)  (12111)
%e A374521              (2121)  (11211)
%e A374521                      (11121)
%t A374521 Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Total[First/@Split[#,UnsameQ]]==k&]],{n,0,15},{k,0,n}]
%Y A374521 Column n = k is A000005, except a(0) = 1.
%Y A374521 Row-sums are A011782.
%Y A374521 Column k = 1 is A096569.
%Y A374521 For length instead of sum we have A106356.
%Y A374521 The corresponding rank statistic is A374516, row-sums of A374515.
%Y A374521 For identical leaders we have A374517, ranks A374519.
%Y A374521 For distinct leaders we have A374518, ranks A374638.
%Y A374521 Other types of runs (instead of anti-):
%Y A374521 - For leaders of identical runs we have A373949.
%Y A374521 - For leaders of weakly increasing runs we have A374637.
%Y A374521 - For leaders of strictly increasing runs we have A374700.
%Y A374521 - For leaders of weakly decreasing runs we have A374748.
%Y A374521 - For leaders of strictly decreasing runs we have A374766.
%Y A374521 A003242 counts anti-run compositions.
%Y A374521 A238130, A238279, A333755 count compositions by number of runs.
%Y A374521 A274174 counts contiguous compositions, ranks A374249.
%Y A374521 Cf. A124766, A238343, A261982, A333213, A374251, A374687, A374761.
%K A374521 nonn,tabl
%O A374521 0,6
%A A374521 _Gus Wiseman_, Aug 02 2024