This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374521 #6 Aug 05 2024 08:44:40 %S A374521 1,0,1,0,0,2,0,1,1,2,0,2,1,2,3,0,2,5,3,4,2,0,5,7,8,3,5,4,0,9,12,11,17, %T A374521 5,8,2,0,14,26,23,22,24,6,9,4,0,25,42,54,41,36,36,7,12,3,0,46,76,88, %U A374521 107,60,60,48,9,14,4 %N A374521 Triangle read by rows where T(n,k) is the number of integer compositions of n whose leaders of anti-runs sum to k. %C A374521 The leaders of anti-runs in a sequence are obtained by splitting it into maximal consecutive anti-runs (sequences with no adjacent equal terms) and taking the first term of each. %H A374521 Gus Wiseman, <a href="/A374629/a374629.txt">Sequences counting and ranking compositions by their leaders (for six types of runs)</a>. %e A374521 Triangle begins: %e A374521 1 %e A374521 0 1 %e A374521 0 0 2 %e A374521 0 1 1 2 %e A374521 0 2 1 2 3 %e A374521 0 2 5 3 4 2 %e A374521 0 5 7 8 3 5 4 %e A374521 0 9 12 11 17 5 8 2 %e A374521 0 14 26 23 22 24 6 9 4 %e A374521 0 25 42 54 41 36 36 7 12 3 %e A374521 0 46 76 88 107 60 60 48 9 14 4 %e A374521 0 78 144 166 179 176 101 83 68 10 17 2 %e A374521 0 136 258 327 339 311 299 139 122 81 12 18 6 %e A374521 0 242 457 602 704 591 544 447 198 165 109 12 23 2 %e A374521 Row n = 6 counts the following compositions: %e A374521 . (15) (24) (321) (42) (51) (6) %e A374521 (141) (114) (312) (1122) (411) (33) %e A374521 (132) (231) (1113) (11112) (3111) (222) %e A374521 (123) (213) (2112) (2211) (111111) %e A374521 (1212) (1311) (1221) (21111) %e A374521 (1131) (12111) %e A374521 (2121) (11211) %e A374521 (11121) %t A374521 Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Total[First/@Split[#,UnsameQ]]==k&]],{n,0,15},{k,0,n}] %Y A374521 Column n = k is A000005, except a(0) = 1. %Y A374521 Row-sums are A011782. %Y A374521 Column k = 1 is A096569. %Y A374521 For length instead of sum we have A106356. %Y A374521 The corresponding rank statistic is A374516, row-sums of A374515. %Y A374521 For identical leaders we have A374517, ranks A374519. %Y A374521 For distinct leaders we have A374518, ranks A374638. %Y A374521 Other types of runs (instead of anti-): %Y A374521 - For leaders of identical runs we have A373949. %Y A374521 - For leaders of weakly increasing runs we have A374637. %Y A374521 - For leaders of strictly increasing runs we have A374700. %Y A374521 - For leaders of weakly decreasing runs we have A374748. %Y A374521 - For leaders of strictly decreasing runs we have A374766. %Y A374521 A003242 counts anti-run compositions. %Y A374521 A238130, A238279, A333755 count compositions by number of runs. %Y A374521 A274174 counts contiguous compositions, ranks A374249. %Y A374521 Cf. A124766, A238343, A261982, A333213, A374251, A374687, A374761. %K A374521 nonn,tabl %O A374521 0,6 %A A374521 _Gus Wiseman_, Aug 02 2024