This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374525 #43 Apr 25 2025 23:39:25 %S A374525 2,7,7,2,45,219,243,5,650,13599,46385,4512,344,46,24520,2542012, %T A374525 23807149,6258387,781647,132869,7134,714,2625117,1649029775, %U A374525 39954292931,22532640821,3839779352,685879134,49418375,5578311,215664,17256,836488618 %N A374525 T(n,k) is the number of distinct n X n {0,1}-matrices that reach a fixed point after k alternately applied sorts by rows and columns, where T(n,k), k>=0 is an irregular triangle read by rows. %C A374525 It is conjectured that for n>=3 the last term > 0 in row n is T(n,2*n-3). This is consistent with the result of random draws, where T(7,11) is the last term in row 7. %C A374525 Approximate values of the terms in the next row 7 from random drawings are as follows: 8.4E8, 3.79E12, 2.38E14, 2.54E14, 5.61E13, 1.02E13, 8.22E11, 9.0E10, 4.2E9, 3E8, 9E6, 1E6. %H A374525 Hugo Pfoertner, <a href="/A374525/a374525.gp.txt">PARI program</a>, computes row n. %H A374525 Markus Sigg, <a href="/A374525/a374525.c.txt">C program</a>, computes row n for A374525 or A374526. %F A374525 For each n: Sum_{k>=0} T(n,k) = 2^(n^2). %F A374525 T(n,0) = A089006(n). %e A374525 The triangle begins %e A374525 \ k 0 1 2 3 4 5 6 7 %e A374525 n ------------------------------------------------------------- %e A374525 1 | 2, %e A374525 2 | 7, 7, 2, %e A374525 3 | 45, 219, 243, 5, %e A374525 4 | 650, 13599, 46385, 4512, 344, 46, %e A374525 5 | 24520, 2542012, 23807149, 6258387, 781647, 132869, 7134, 714 %e A374525 . %e A374525 T(2,0) = 7; %e A374525 matrices that are already stably sorted, i.e., neither affected %e A374525 by sorting by rows nor by sorting by columns: %e A374525 [0, 0; 0, 0], [0, 0; 0, 1], [0, 0; 1, 1], [0, 1; 0, 1], %e A374525 [0, 1; 1, 0], [0, 1; 1, 1], [1, 1; 1, 1] %e A374525 . %e A374525 T(2,1) = 7; matrices that become stable after one sort: %e A374525 sorting by stable %e A374525 [0, 0; 1, 0] columns -> [0, 0; 0, 1] %e A374525 [0, 1; 0, 0] rows -> [0, 0; 0, 1] %e A374525 [1, 0; 0, 1] rows or -> [0, 1; 1, 0] %e A374525 columns %e A374525 [1, 0; 1, 0] columns -> [0, 1; 0, 1] %e A374525 [1, 0; 1, 1] columns -> [0, 1; 1, 1] %e A374525 [1, 1; 0, 0] rows -> [0, 0; 1, 1] %e A374525 [1, 1; 0, 1] rows -> [0, 1; 1, 1] %e A374525 . %e A374525 T(2,2) = 2; matrices needing two sorts to become stable: %e A374525 sorting by stable %e A374525 [1, 0] [0, 1] [0, 0] %e A374525 [0, 0] [0, 0] [0, 1] %e A374525 columns -> rows -> %e A374525 [1, 1] [1, 1] [0, 1] %e A374525 [1, 0] [0, 1] [1, 1] %o A374525 (PARI) \\ See link. %Y A374525 Cf. A002416 (row sums), A089006 (column 0), A374526. %K A374525 nonn,tabf,hard,more %O A374525 1,1 %A A374525 _Hugo Pfoertner_ at the suggestion of _Markus Sigg_, Jul 19 2024 %E A374525 a(24)-a(33) (row 6 of triangle) from _Markus Sigg_, Jul 25 2024