A374531 a(n) = A374494(A374494(n)).
1, 2, 3, 5, 9, 6, 7, 8, 4, 10, 14, 20, 12, 18, 15, 16, 17, 11, 19, 13, 21, 27, 35, 25, 33, 23, 31, 28, 29, 30, 22, 32, 24, 34, 26, 36, 44, 54, 42, 52, 40, 50, 38, 48, 45, 46, 47, 37, 49, 39, 51, 41, 53, 43, 55
Offset: 1
Examples
Triangle begins: k = 1 2 3 4 5 6 7 8 9 10 11 n=1: 1, 2, 3; n=2: 5, 9, 6, 7, 8, 4, 10; n=3: 14, 20, 12, 18, 15, 16, 17, 11, 19, 13, 21; The triangle's rows can be arranged as two successive upward antidiagonals in an array: 1, 3, 6, 10, 15, 21, ... 2, 9, 4, 18, 13, 31, ... 5, 8, 12, 19, 23, 34, ... 7, 20, 11, 33, 24, 50, ... 14, 17, 25, 32, 40, 51, ... 16, 35, 22, 52, 39, 73, ... Subtracting (n-1)*(2*n-1) from each term in row n is a permutation of 1 .. 4*n-1: 1,2,3, 2,6,3,4,5,1,7 4,10,2,8,5,6,7,1,9,3,11 ... The 4th power of each permutation in example A373498 is equal to the corresponding permutation above: (2,1,3)^4 = (1,2,3), (2,6,4,3,5,1,7)^4 = (2,6,3,4,5,1,7), (2,8,4,10,6,5,7,3,9,1,11)^4 = (4,10,2,8,5,6,7,1,9,3,11).
Links
- Boris Putievskiy, Table of n, a(n) for n = 1..9870
- Boris Putievskiy, Integer Sequences: Irregular Arrays and Intra-Block Permutations, arXiv:2310.18466 [math.CO], 2023.
- Index entries for sequences that are permutations of the natural numbers.
Programs
-
Mathematica
Nmax=21; a[n_]:=Module[{L,R,P,Result},L=Ceiling[(Sqrt[8*n+1]-1)/4]; R=n-(L-1)*(2*L-1); P=Which[R<=2*L-1&&Mod[R,2]==1,R+1,R<=2*L-1&&Mod[R,2]==0,R+2*L,R>2*L-1&&Mod[R,2]==1,R,R>2*L-1&&Mod[R,2]==0,4*L-1-R]; Result=P+(L-1)*(2*L-1); Result] Table[a[n],{n,1,Nmax}] (* A373498(n) *) Table[a[a[a[a[n]]]],{n,1,Nmax}] (* this sequence *) Nmax=21; a[n_]:=Module[{L,R,P,Result},L=Ceiling[(Sqrt[8*n+1]-1)/4]; R=n-(L-1)*(2*L-1); P=Which[R<2*L-1&&Mod[R,2]==1,2*L-R-1,R<2*L-1&&Mod[R,2]==0,4*L-R,R==2*L,R,R>=2*L-1&&Mod[R,2]==1,R,R>=2*L-1&&Mod[R,2]==0,-2*L+R-1]; Result=P+(L-1)*(2*L-1); Result]; Table[a[n],{n,1,Nmax}]
Formula
Linear sequence:
a(n) = P(n) + (L(n)-1)*(2*L(n)-1), where L(n) = ceiling((sqrt(8*n+1)-1)/4),
L(n) = A204164(n), R(n) = n - (L(n)-1)*(2*L(n)-1), P(n) = 2*L(n) - R(n) - 1, if R(n) < 2*L(n) - 1 and R(n) mod 2 = 1, P(n) = 4*L(n) - R(n), if R(n) < 2*L(n) - 1 and R(n) mod 2 = 0, P(n) = R(n), if R(n) = 2*L(n), P(n) = R(n), if R(n) >= 2*L(n) - 1 and R(n) mod 2 = 1, P(n) = - 2*L(n) + R(n) - 1, if R(n) >= 2*L(n) - 1 and R(n) mod 2 = 0.
Triangular array T(n,k) for 1 <= k <= 4*n-1 (see Example):
T(n,k) = (n-1)*(2*n-1) + P(n,k), where P(n,k) = 2n - k - 1, if k < 2*n-1 and k mod 2 = 1, P(n,k) = 4n - k, if k < 2*n-1 and k mod 2 = 0, P(n,k) = k, if k = 2*n, P(n,k) = k, if k >= 2*n and k mod 2 = 1, P(n,k) = - 2n + k - 1, if k >= 2*n and k mod 2 = 0.
Comments