cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374539 The sum of the squares of the infinitary divisors of n.

This page as a plain text file.
%I A374539 #10 Jul 11 2024 13:15:52
%S A374539 1,5,10,17,26,50,50,85,82,130,122,170,170,250,260,257,290,410,362,442,
%T A374539 500,610,530,850,626,850,820,850,842,1300,962,1285,1220,1450,1300,
%U A374539 1394,1370,1810,1700,2210,1682,2500,1850,2074,2132,2650,2210,2570,2402,3130,2900
%N A374539 The sum of the squares of the infinitary divisors of n.
%C A374539 Also the sum of the infinitary divisors of n^2.
%H A374539 Amiram Eldar, <a href="/A374539/b374539.txt">Table of n, a(n) for n = 1..10000</a>
%F A374539 a(n) = A049417(n^2).
%F A374539 a(n) <= A001157(n), with equality if and only if n is in A036537.
%F A374539 Multiplicative with a(p^e) = Product{k>=1, e_k=1} (p^(2^(k+1)) + 1), where e = Sum_{k} e_k * 2^k is the binary representation of e, i.e., e_k is bit k of e.
%F A374539 Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = Product_{P} (1 + 1/(P^2*(P+1))) = 1.14142906130350119631..., and P are numbers of the form p^(2^k) where p is prime and k >= 0 (A050376).
%t A374539 f[p_, e_] := p^(2^Position[Reverse@IntegerDigits[e, 2], _?(# == 1 &)]); a[1] = 1; a[n_] := Times @@ (Flatten@(f @@@ FactorInteger[n]) + 1); Array[a, 100]
%o A374539 (PARI) a(n) = {my(f = factor(n), b); prod(i = 1, #f~, b = binary(2 * f[i, 2]); prod(k=1, #b, if(b[k], 1+f[i, 1]^(2^(#b-k)), 1)));}
%o A374539 (Python)
%o A374539 from math import prod
%o A374539 from sympy import factorint
%o A374539 def A374539(n): return prod(p**(1<<i)+1 for p, e in factorint(n).items() for i, j in enumerate(bin(e)[-1:1:-1],1) if j=='1') # _Chai Wah Wu_, Jul 11 2024
%Y A374539 Cf. A049417, A050376, A077609.
%Y A374539 Similar sequences: A001157, A034676, A050999, A067558, A076577, A351265, A351307, A351647.
%K A374539 nonn,easy,mult
%O A374539 1,2
%A A374539 _Amiram Eldar_, Jul 11 2024