cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374540 a(1) = 0; for n >= 2, a(n) is the number of iterations needed for the map x -> x/A000005(x) to reach a least integer, when starting from x = A033950(n).

Original entry on oeis.org

0, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Ctibor O. Zizka, Jul 11 2024

Keywords

Comments

The refactorability "depth" for refactorable numbers. Numbers from A159973 have the refactorability "depth" 0. Records reached for A033950(A360806(n)), i.e. the growth of the sequence is very slow.

Examples

			n = 2: A033950(2) = 2, 2/A000005(2) = 1, thus a(2) = 1.
n = 3: A033950(3) = 8, 8/A000005(8) = 2 --> 2/A000005(2) = 1, thus a(3) = 2.
n = 13: A033950(13) = 80, 80/A000005(80) = 8 --> 8/A000005(8) = 2 --> 2/A000005(2) = 1, thus a(13) = 3.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Module[{v = NestWhileList[# / DivisorSigma[0, #] &, n, IntegerQ[#] && # > 1 &], len}, len = Length[v]; If[IntegerQ[v[[2]]], If[v[[-1]] == 1, len - 1, len - 2], Nothing]]; f[1] = 0; Array[f, 1200] (* Amiram Eldar, Jul 11 2024 *)