cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374541 Number of length n inversion sequences avoiding the patterns 000 and 102.

Original entry on oeis.org

1, 1, 2, 5, 14, 40, 121, 373, 1181, 3796, 12391, 40902, 136408, 458735, 1554220, 5299505, 18172874, 62630809, 216821747, 753646690, 2629153881, 9202404515, 32307100270, 113735363082, 401418269205, 1420094167064, 5034768842706, 17886133630919, 63660082770995
Offset: 0

Views

Author

Benjamin Testart, Jul 11 2024

Keywords

Formula

G.f. F(x) is algebraic with minimal polynomial x^4*F(x)^4 - 2x^3*(x - 1)*F(x)^3 + x*(x^3 - 2x^2 + 4x - 1)*F(x)^2 - (2x^2 - 2x + 1)*F(x) + 1.
D-finite with recurrence +6*n*(2*n+3)*(n+1)*( 115902037476970209609532651797*n^2 -804118437163528377413428024057*n +1144854118031312841899645712338)*a(n) -n*(10309262772112485980996703347969*n^4 -57162589371549435280943274602278*n^3 +12807374239180509091028006690617*n^2 +84356126163879743293193632901956*n +18185483948089898030087482673436)*a(n-1) +(-15899321872218080521626271255801*n^5 +190505272362978094637444778237788*n^4 -742400385313337115745145921980901*n^3 +1019298552408570449091756485004142*n^2 -511271776606699338659085562591944*n +73466790571048631419529002789056)*a(n-2) +2*(56936644898147528366574504466487*n^5 -675905645915443170938754654383314*n^4 +3075899243769705758269387104723700*n^3 -7058855512159881677801564918535971*n^2 +8329069356873697552872190210428006*n -4010067281702663096010201516806496)*a(n-3) +6*(19715522268053782894372158603554*n^5 -223873172486730362151444782585359*n^4 +768950708146310213860389653514276*n^3 -322203528457905963286300676101927*n^2 -2652956139033073818620652982999090*n +3431951459827641350270606566580448)*a(n-4) +6*(-28783069213038773900872833291016*n^5 +660483392782304911307979323624655*n^4 -5710025389637531078101745800393964*n^3 +23348742745530285114652064145006971*n^2 -45038913957699867856392343980190102*n +32395575988873081222604689446753408)*a(n-5) +2*(-52125561607675742290830728101036*n^5 +1096826483115921591413340938785277*n^4 -8964613839701931786202789630678637*n^3 +35452105313339403598394068417163428*n^2 -67298808848110422804027907099733868*n +48130119233409879884308835283522912)*a(n-6) +2*(1335874141771041425279542675228*n^5 -89624832525830246822350394263871*n^4 +1285352819570898563452386493037618*n^3 -7379532769264495115767883376023869*n^2 +18431453516658889307737544610500190*n -16496221432359357241460726610441888)*a(n-7) +4*(n-8)*(11825669122095960407967481054039*n^4 -203980551515992382593286563968000*n^3 +1240787898462597866259674648717159*n^2 -3106873194313435459725804877098966*n +2614835102425910549478511336348776)*a(n-8) -24*(n-5)*(n-8)*(n-9)*(474105943175860040316559647091*n^2 -2672180534791313338630701561778*n +3260085783436342074450617685024)*a(n-9)=0. - R. J. Mathar, Jul 12 2024