cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374553 Number of length n inversion sequences avoiding the patterns 010 and 102.

This page as a plain text file.
%I A374553 #15 Nov 21 2024 09:06:02
%S A374553 1,1,2,5,15,51,186,707,2763,11024,44714,183830,764374,3209031,
%T A374553 13584217,57918257,248502212,1072159593,4648747281,20245772943,
%U A374553 88524364619,388469248937,1710304847176,7552480937589,33442335151831,148456424569164,660560252794208
%N A374553 Number of length n inversion sequences avoiding the patterns 010 and 102.
%H A374553 Benjamin Testart, <a href="/A374553/b374553.txt">Table of n, a(n) for n = 0..700</a>
%H A374553 Jay Pantone, <a href="https://arxiv.org/abs/2310.19632">The enumeration of inversion sequences avoiding the patterns 201 and 210</a>, arXiv:2310.19632 [math.CO], 2023.
%H A374553 Benjamin Testart, <a href="https://arxiv.org/abs/2407.07701">Completing the enumeration of inversion sequences avoiding one or two patterns of length 3</a>, arXiv:2407.07701 [math.CO], 2024.
%H A374553 Benjamin Testart, <a href="https://arxiv.org/abs/2411.05726">Generating trees growing on the left for pattern-avoiding inversion sequences</a>, arXiv:2411.05726 [math.CO], 2024.
%F A374553 G.f. F(x) is algebraic with minimal polynomial x * (x^2 - x + 1)*(x - 1)^2 * F(x)^3 + 2*x*(x - 1)*(2*x^2 - 2*x + 1)*F(x)^2 - (x^4 - 8*x^3 + 11*x^2 - 6*x + 1)*F(x) - (2*x - 1)*(x - 1)^2.
%Y A374553 Cf. A200753, A263779, A279559, A279566, A374541, A374542.
%K A374553 nonn
%O A374553 0,3
%A A374553 _Benjamin Testart_, Jul 17 2024