cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374580 a(n) is the numerator of (120*n^2 + 151*n + 47)/(512*n^4 + 1024*n^3 + 712*n^2 + 194*n + 15).

This page as a plain text file.
%I A374580 #18 Jul 15 2024 10:22:40
%S A374580 47,106,829,316,857,3802,5273,776,1787,11126,4519,16228,19139,1486,
%T A374580 25681,29312,3687,37294,8329,15412,51067,56138,20483,2680,72791,8758,
%U A374580 85093,91604,6557,105346,112577,40016,127759,27142,15989,152332,161003,56638,35813,188456
%N A374580 a(n) is the numerator of (120*n^2 + 151*n + 47)/(512*n^4 + 1024*n^3 + 712*n^2 + 194*n + 15).
%C A374580 See Bailey and Crandall (2001), section 5 (pp. 183-184) for a derivation of this rational polynomial.
%C A374580 Denominators are given by A374581.
%H A374580 Paolo Xausa, <a href="/A374580/b374580.txt">Table of n, a(n) for n = 0..10000</a>
%H A374580 David H. Bailey and Richard E. Crandall, <a href="https://doi.org/10.1080/10586458.2001.10504441">On the Random Character of Fundamental Constant Expansions</a>, Experimental Mathematics, Vol. 10 (2001), Issue 2, pp. 175-190 (<a href="https://www.davidhbailey.com/dhbpapers/baicran.pdf">preprint draft</a>).
%F A374580 Sum_{n >= 0} (1/16^n)*a(n)/A374581(n) = A000796. See Bailey and Crandall (2001), eq. 5-2, p. 184.
%t A374580 A374580[n_] := Numerator[(120*n^2 + 151*n + 47)/(512*n^4 + 1024*n^3 + 712*n^2 + 194*n + 15)];
%t A374580 Array[A374580, 50, 0]
%o A374580 (Python)
%o A374580 from math import gcd
%o A374580 def A374580(n): return (lambda p,q: p//gcd(p,q))(n*(120*n + 151) + 47,n*(n*(n*(512*n + 1024) + 712) + 194) + 15) # _Chai Wah Wu_, Jul 14 2024
%Y A374580 Cf. A000796, A001025, A374334, A374581 (denominators), A374607.
%K A374580 nonn,frac
%O A374580 0,1
%A A374580 _Paolo Xausa_, Jul 12 2024