cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374581 a(n) is the denominator of (120*n^2 + 151*n + 47)/(512*n^4 + 1024*n^3 + 712*n^2 + 194*n + 15).

Original entry on oeis.org

15, 819, 19635, 15225, 69597, 466785, 911547, 179645, 533715, 4165161, 2072385, 8947437, 12491175, 1133055, 22621131, 29539125, 4214903, 48002745, 11990775, 24669567, 90400695, 109375617, 43730505, 6244749, 184439871, 24049985, 252455907, 292777485, 22516425, 387706641
Offset: 0

Views

Author

Paolo Xausa, Jul 12 2024

Keywords

Comments

See Bailey and Crandall (2001), section 5 (pp. 183-184) for a derivation of this rational polynomial.
Numerators are given by A374580.

Crossrefs

Cf. A000796, A001025, A374335, A374580 (numerators), A374608.

Programs

  • Mathematica
    A374581[n_] := Denominator[(120*n^2 + 151*n + 47)/(512*n^4 + 1024*n^3 + 712*n^2 + 194*n + 15)];
    Array[A374581, 30, 0]
  • Python
    from math import gcd
    def A374581(n): return (lambda p,q: q//gcd(p,q))(n*(120*n + 151) + 47,n*(n*(n*(512*n + 1024) + 712) + 194) + 15) # Chai Wah Wu, Jul 14 2024

Formula

Sum_{n >= 0} (1/16^n)*A374580(n)/a(n) = A000796. See Bailey and Crandall (2001), eq. 5-2, p. 184.