cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374586 The maximum exponent in the prime factorization of the numbers that are divisible by the maximum exponent in their prime factorization.

This page as a plain text file.
%I A374586 #12 Jul 14 2024 08:51:29
%S A374586 1,1,2,1,1,1,1,1,2,1,1,1,4,1,2,1,2,1,1,1,3,1,3,2,1,1,1,1,1,1,2,1,1,1,
%T A374586 1,1,1,2,1,1,4,2,1,2,1,3,1,1,1,1,2,1,1,1,1,1,2,1,1,1,3,1,1,2,1,1,1,4,
%U A374586 1,1,2,1,1,1,1,2,1,2,1,1,1,1,2,2,1,1,1
%N A374586 The maximum exponent in the prime factorization of the numbers that are divisible by the maximum exponent in their prime factorization.
%H A374586 Amiram Eldar, <a href="/A374586/b374586.txt">Table of n, a(n) for n = 1..10000</a>
%F A374586 a(n) = A051903(A336064(n)).
%F A374586 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=1} k * d(k) / Sum_{k>=1} d(k) = 1.46254458894503050564..., where d(k) = (1/zeta(k+1)) * Product_{p prime, p|k} ((p^(k-e(p,k)+1) - 1)/(p^(k+1) - 1)) - (1/zeta(k)) * Product_{p prime, p|k} ((p^(k-e(p,k)) - 1)/(p^k - 1)) for k >= 2, and d(1) = 1/zeta(2), and e(p,k) is the exponent of the largest of power of p that divides k.
%t A374586 f[n_] := Module[{e = If[n == 1, 0, Max[FactorInteger[n][[;; , 2]]]]}, If[e > 0 && Divisible[n, e], e, Nothing]]; Array[f, 150]
%o A374586 (PARI) lista(kmax) = {my(e); for(k = 2, kmax, e = vecmax(factor(k)[, 2]); if(!(k % e), print1(e, ", ")));}
%Y A374586 Cf. A051903, A336064, A336065, A374587.
%K A374586 nonn,easy
%O A374586 1,3
%A A374586 _Amiram Eldar_, Jul 12 2024