cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374587 The maximum exponent in the prime factorization of the numbers that are not coprime to the maximum exponent in their prime factorization.

This page as a plain text file.
%I A374587 #11 Jul 14 2024 08:51:34
%S A374587 2,2,4,2,2,3,3,2,2,2,4,2,2,3,2,6,2,3,2,4,2,2,2,2,2,3,4,2,3,2,2,2,3,2,
%T A374587 4,2,2,2,5,4,2,3,2,4,2,2,3,6,2,2,2,4,2,3,2,2,2,2,4,2,2,2,8,2,3,2,3,4,
%U A374587 2,2,2,2,3,2,4,2,2,3,2,6,4,2,4,2,2,2,2
%N A374587 The maximum exponent in the prime factorization of the numbers that are not coprime to the maximum exponent in their prime factorization.
%H A374587 Amiram Eldar, <a href="/A374587/b374587.txt">Table of n, a(n) for n = 1..10000</a>
%F A374587 a(n) = A051903(A368715(n)).
%F A374587 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=2} k * d(k) / Sum_{k>=2} d(k) = 2.74240523513766773312..., where d(k) = (1 - 1/f(k+1, k))/zeta(k+1) - (1 - 1/f(k, k))/zeta(k), and f(e, m) = Product_{primes p|m} ((1-1/p^e)/(1-1/p)).
%t A374587 f[n_] := Module[{e = If[n == 1, 0, Max[FactorInteger[n][[;; , 2]]]]}, If[!CoprimeQ[n, e], e, Nothing]]; Array[f, 350]
%o A374587 (PARI) lista(kmax) = {my(e); for(k = 2, kmax, e = vecmax(factor(k)[, 2]); if(gcd(k, e) > 1, print1(e, ", ")));}
%Y A374587 Cf. A051903, A368715, A374586.
%K A374587 nonn,easy
%O A374587 1,1
%A A374587 _Amiram Eldar_, Jul 12 2024