cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A375848 The maximum exponent in the prime factorization of the numbers whose maximum exponent in their prime factorization is an evil number (A374590).

Original entry on oeis.org

0, 3, 3, 3, 5, 3, 3, 3, 6, 3, 3, 5, 3, 3, 3, 3, 3, 3, 3, 5, 3, 3, 3, 6, 3, 3, 5, 3, 5, 3, 3, 3, 3, 3, 5, 3, 3, 3, 6, 3, 3, 3, 3, 5, 3, 3, 3, 3, 3, 3, 5, 3, 3, 6, 3, 3, 3, 5, 5, 3, 3, 3, 9, 3, 3, 3, 3, 5, 3, 3, 6, 3, 3, 3, 5, 3, 3, 3, 3, 5, 3, 3, 3, 3, 3, 6, 3, 3, 6, 5, 3, 3, 3, 3, 3, 3, 3, 5, 3, 3, 6, 3, 3, 3, 5
Offset: 1

Views

Author

Amiram Eldar, Aug 31 2024

Keywords

Crossrefs

Programs

  • Mathematica
    evilQ[n_] := EvenQ[DigitCount[n, 2, 1]]; s[n_] := Module[{e = Max[FactorInteger[n][[;; , 2]]]}, If[evilQ[e], e, Nothing]]; s[1] = 0; Array[s, 1000]
  • PARI
    lista(kmax) = {my(e); print1(0, ", "); for(k = 2, kmax, e = vecmax(factor(k)[,2]); if(!(hammingweight(e) % 2), print1(e, ", ")));}

Formula

a(n) = A051903(A374590(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k in A001969} (k * (1/zeta(k+1) - 1/zeta(k))) / d = 3.61461685523237846738..., where d = Sum_{k in A001969} (1/zeta(k+1) - 1/zeta(k)) = 0.12101890210392912747... is the asymptotic density of A374590.

A374588 Numbers whose maximum exponent in their prime factorization is a composite number.

Original entry on oeis.org

16, 48, 64, 80, 81, 112, 144, 162, 176, 192, 208, 240, 256, 272, 304, 320, 324, 336, 368, 400, 405, 432, 448, 464, 496, 512, 528, 560, 567, 576, 592, 624, 625, 648, 656, 688, 704, 720, 729, 752, 768, 784, 810, 816, 832, 848, 880, 891, 912, 944, 960, 976, 1008
Offset: 1

Views

Author

Amiram Eldar, Jul 12 2024

Keywords

Comments

Subsequence of A322448 and first differs from it at n = 138: A322448(138) = 2592 = 2^5 * 3^4 is not a term of this sequence.
The asymptotic density of this sequence is d = Sum_{k composite} (1/zeta(k+1) - 1/zeta(k)) = 0.05296279266796920306... . The asymptotic density of this sequence within the nonsquarefree numbers (A013929) is d / (1 - 1/zeta(2)) = 0.13508404411123191108... .

Crossrefs

Complement of A074661 within A013929.
Subsequence of A322448 and A322449 \ {1}.
Similar sequences: A368714, A369937, A369938, A369939, A374589, A374590.

Programs

  • Maple
    filter:= proc(n) local m;
      m:= max(ifactors(n)[2][..,2]);
      m > 1 and not isprime(m)
    end proc:
    select(filter, [$1..10000]); # Robert Israel, Jul 14 2024
  • Mathematica
    Select[Range[1200], CompositeQ[Max[FactorInteger[#][[;; , 2]]]] &]
  • PARI
    iscomposite(n) = n > 1 && !isprime(n);
    is(n) = n > 1 && iscomposite(vecmax(factor(n)[, 2]));

A374589 Numbers whose maximum exponent in their prime factorization is a powerful number larger than 1.

Original entry on oeis.org

16, 48, 80, 81, 112, 144, 162, 176, 208, 240, 256, 272, 304, 324, 336, 368, 400, 405, 432, 464, 496, 512, 528, 560, 567, 592, 624, 625, 648, 656, 688, 720, 752, 768, 784, 810, 816, 848, 880, 891, 912, 944, 976, 1008, 1040, 1053, 1072, 1104, 1134, 1136, 1168, 1200
Offset: 1

Views

Author

Amiram Eldar, Jul 12 2024

Keywords

Comments

Subsequence of A130897 and first differs from it at n = 115: A130897(115) = 2592 = 2^5 * 3^4 is not a term of this sequence.
The asymptotic density of this sequence is d = Sum_{k > 1 and in A001694} (1/zeta(k+1) - 1/zeta(k)) = 0.043523813088759413253... . The asymptotic density of this sequence within A130897 is d/(1 - A262276) = 0.98744988886705430331... .

Crossrefs

Subsequence of A013929, A130897 and A372405.
Similar sequences: A368714, A369937, A369938, A369939, A374588, A374590.

Programs

  • Mathematica
    powQ[n_] := Min[FactorInteger[n][[;; , 2]]] > 1; q[n_] := powQ[Max[ FactorInteger[n][[;; , 2]] ]]; Select[Range[1200], q]
  • PARI
    ispow(n) = n > 1 && ispowerful(n);
    is(n) = n > 1 && ispow(vecmax(factor(n)[, 2]))

A382292 Numbers k such that A382290(k) = 1.

Original entry on oeis.org

8, 24, 27, 32, 40, 54, 56, 64, 72, 88, 96, 104, 108, 120, 125, 135, 136, 152, 160, 168, 184, 189, 192, 200, 224, 232, 243, 248, 250, 264, 270, 280, 288, 296, 297, 312, 320, 328, 343, 344, 351, 352, 360, 375, 376, 378, 392, 408, 416, 424, 432, 440, 448, 456, 459, 472, 480, 486, 488, 500
Offset: 1

Views

Author

Amiram Eldar, Mar 21 2025

Keywords

Comments

First differs from A374590 and A375432 at n = 25: A374590(25) = A375432(25) = 216 is not a term of this sequence.
Numbers k such that A382291(k) = 2, i.e., numbers whose number of infinitary divisors is twice the number of their unitary divisors.
Numbers whose prime factorization has a single exponent that is a sum of two distinct powers of 2 (A018900) and all the other exponents, if they exist, are powers of 2. Equivalently, numbers of the form p^e * m, where p is a prime, e is a term in A018900, and m is a term in A138302 that is coprime to p.
If k is a term then k^2 is also a term. If m is a term in A138302 that is coprime to k then k * m is also a term. The primitive terms, i.e., the terms that cannot be generated from smaller terms using these rules, are the numbers of the form p^(2^i+1), where p is prime and i >= 1.
Analogous to A060687, which is the sequence of numbers k with prime excess A046660(k) = 2.
The asymptotic density of this sequence is A271727 * Sum_{p prime} (((1 - 1/p)/f(1/p)) * Sum_{k>=1} 1/p^A018900(k)) = 0.11919967112489084407..., where f(x) = 1 - x^3 + Sum_{k>=2} (x^(2^k)-x^(2^k+1)).

Crossrefs

Subsequences (numbers of the form): A030078 (p^3), A050997 (p^5), A030516 (p^6), A179665 (p^9), A030629 (p^10), A030631 (p^12), A065036 (p^3*q), A178740 (p^5*q), A189987 (p^6*q), A179692 (p^9*q), A143610 (p^2*q^3), A179646 (p^5*q^2), A189990 (p^2*q^6), A179702 (p^4*q^5), A179666 (p^4*q^3), A190464 (p^4*q^6), A163569 (p^3*q^2*r), A189975 (p*q*r^3), A190115 (p^2*q^3*r^4), A381315, A048109.

Programs

  • Mathematica
    f[p_, e_] := DigitCount[e, 2, 1] - 1; q[1] = False; q[n_] := Plus @@ f @@@ FactorInteger[n] == 1; Select[Range[500], q]
  • PARI
    isok(k) = vecsum(apply(x -> hammingweight(x) - 1, factor(k)[, 2])) == 1;

A375432 Numbers k such that A375428(k) > A375430(k).

Original entry on oeis.org

8, 24, 27, 32, 40, 54, 56, 64, 72, 88, 96, 104, 108, 120, 125, 135, 136, 152, 160, 168, 184, 189, 192, 200, 216, 224, 232, 243, 248, 250, 256, 264, 270, 280, 288, 296, 297, 312, 320, 328, 343, 344, 351, 352, 360, 375, 376, 378, 392, 408, 416, 424, 440, 448, 456
Offset: 1

Views

Author

Amiram Eldar, Aug 15 2024

Keywords

Comments

First differs from A374590 at n = 31.
For numbers k that are not in this sequence A375428(k) = A375430(k).
Numbers k such that A051903(k)+1 is not of the form Fibonacci(m)-1, m >= 3.
The asymptotic density of this sequence is 1 - 1/zeta(2) - Sum_{k>=4} (1/zeta(Fibonacci(k)) - 1/zeta(Fibonacci(k)-1)) = 0.12330053981922224451... .

Examples

			8 is a term since A375428(8) = 3 > 2 = A375430(8).
		

Crossrefs

Programs

  • Mathematica
    fibQ[n_] := n >= 2 && Or @@ IntegerQ /@ Sqrt[5*n^2 + {-4, 4}]; Select[Range[300], !fibQ[Max[FactorInteger[#][[;;, 2]]] + 1] &]
  • PARI
    isfib(n) = n >= 2 && (issquare(5*n^2-4) || issquare(5*n^2+4));
    is(n) = n > 1 && !isfib(vecmax(factor(n)[,2]) + 1);
Showing 1-5 of 5 results.