This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374594 #11 Dec 17 2024 17:25:31 %S A374594 16,18,18,20,20,24,30,30,36,48,70,90,180,180,420,528,870,1170,2610 %N A374594 Areas of trapezoids with integer sides and height whose area equals their perimeter. %C A374594 A trapezoid is a quadrilateral with at least one pair of parallel sides. %C A374594 Conjecture: in this sequence are only four terms which belong to trapezoids with exactly one pair of parallel sides: a(2) = 18, a(4) = 20, a(6) = 24, a(7) = 30. %H A374594 Felix Huber, <a href="/A374594/a374594_2.pdf">Illustration of terms a(1) to a(11)</a> %H A374594 Felix Huber, <a href="/A374594/a374594_3.pdf">Sides and heights of the trapezoids belonging to the terms a(1) to a(19)</a> %H A374594 Eric Weisstein's World of Mathematics,<a href="https://mathworld.wolfram.com/Trapezoid.html">Trapezoid</a>. %H A374594 Wikipedia, <a href="https://en.wikipedia.org/wiki/Trapezoid">Trapezoid</a>. %e A374594 See attached illustration of the terms a(1) to a(11). %p A374594 with(NumberTheory): %p A374594 A374594:=proc(k); %p A374594 local K,L,S,T,i,a,c,x,y,h,b,d; %p A374594 L:=map(x->x/2, Divisors(2*k) minus {1, 2}); %p A374594 S:=[]; %p A374594 T:=[]; %p A374594 K:=[]; %p A374594 for i to numelems(L) do %p A374594 for c to L[i] do %p A374594 a:=2*L[i]-c; %p A374594 h:=k/L[i]; %p A374594 x:=0; %p A374594 while x^2<(k-a-c)^2-h^2 do %p A374594 if issqr(x^2+h^2) then %p A374594 d:=isqrt(x^2+h^2); %p A374594 b:=k-a-c-d; %p A374594 y:=a-c-x; %p A374594 if h^2+y^2=b^2 then %p A374594 S:=[a,b,c,d]; %p A374594 S:=sort(S); %p A374594 if member(S,T)=false then %p A374594 T:=[op(T),S]; %p A374594 K:=[op(K),k]; %p A374594 fi; %p A374594 fi; %p A374594 fi; %p A374594 x:=x+1; %p A374594 od; %p A374594 od; %p A374594 od; %p A374594 if numelems(K)>0 then %p A374594 return op(K) %p A374594 fi; %p A374594 end proc; %p A374594 seq(A374594(k),k=1..3000); %Y A374594 Cf. A098030, A181945, A189415, A214602, A272459, A335187, A340858, A348143, A360790. %K A374594 nonn,more %O A374594 1,1 %A A374594 _Felix Huber_, Jul 13 2024 %E A374594 Corrected by _Felix Huber_, Dec 04 2024