cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374594 Areas of trapezoids with integer sides and height whose area equals their perimeter.

This page as a plain text file.
%I A374594 #11 Dec 17 2024 17:25:31
%S A374594 16,18,18,20,20,24,30,30,36,48,70,90,180,180,420,528,870,1170,2610
%N A374594 Areas of trapezoids with integer sides and height whose area equals their perimeter.
%C A374594 A trapezoid is a quadrilateral with at least one pair of parallel sides.
%C A374594 Conjecture: in this sequence are only four terms which belong to trapezoids with exactly one pair of parallel sides: a(2) = 18, a(4) = 20, a(6) = 24, a(7) = 30.
%H A374594 Felix Huber, <a href="/A374594/a374594_2.pdf">Illustration of terms a(1) to a(11)</a>
%H A374594 Felix Huber, <a href="/A374594/a374594_3.pdf">Sides and heights of the trapezoids belonging to the terms a(1) to a(19)</a>
%H A374594 Eric Weisstein's World of Mathematics,<a href="https://mathworld.wolfram.com/Trapezoid.html">Trapezoid</a>.
%H A374594 Wikipedia, <a href="https://en.wikipedia.org/wiki/Trapezoid">Trapezoid</a>.
%e A374594 See attached illustration of the terms a(1) to a(11).
%p A374594 with(NumberTheory):
%p A374594 A374594:=proc(k);
%p A374594   local K,L,S,T,i,a,c,x,y,h,b,d;
%p A374594   L:=map(x->x/2, Divisors(2*k) minus {1, 2});
%p A374594   S:=[];
%p A374594   T:=[];
%p A374594   K:=[];
%p A374594   for i to numelems(L) do
%p A374594     for c to L[i] do
%p A374594       a:=2*L[i]-c;
%p A374594       h:=k/L[i];
%p A374594       x:=0;
%p A374594       while x^2<(k-a-c)^2-h^2 do
%p A374594         if issqr(x^2+h^2) then
%p A374594           d:=isqrt(x^2+h^2);
%p A374594           b:=k-a-c-d;
%p A374594           y:=a-c-x;
%p A374594           if h^2+y^2=b^2 then
%p A374594             S:=[a,b,c,d];
%p A374594             S:=sort(S);
%p A374594             if member(S,T)=false then
%p A374594               T:=[op(T),S];
%p A374594               K:=[op(K),k];
%p A374594             fi;
%p A374594           fi;
%p A374594         fi;
%p A374594         x:=x+1;
%p A374594       od;
%p A374594     od;
%p A374594   od;
%p A374594   if numelems(K)>0 then
%p A374594     return op(K)
%p A374594   fi;
%p A374594 end proc;
%p A374594 seq(A374594(k),k=1..3000);
%Y A374594 Cf. A098030, A181945, A189415, A214602, A272459, A335187, A340858, A348143, A360790.
%K A374594 nonn,more
%O A374594 1,1
%A A374594 _Felix Huber_, Jul 13 2024
%E A374594 Corrected by _Felix Huber_, Dec 04 2024