cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374597 a(n) = floor(area) for the area of the largest square that can be inscribed in the n-th Pythagorean triangle, with one side of the square on the hypotenuse of the triangle, for Pythagorean triangles ordered first by increasing perimeter, then by shorter leg.

Original entry on oeis.org

2, 10, 11, 23, 24, 42, 28, 46, 65, 93, 94, 99, 75, 128, 52, 104, 168, 213, 112, 185, 223, 262, 269, 84, 318, 373, 156, 378, 290, 391, 444, 398, 252, 301, 515, 584, 209, 417, 591, 124, 673, 555, 621, 759, 632, 568, 839, 852, 269, 448, 949, 1038, 172, 742, 895, 1051, 679, 1077
Offset: 1

Views

Author

Keywords

Comments

For a triangle with leg lengths x,y, the square has side length x*y*z/(x*y + z^2) and the area rounded down is a(n) = f(x,y,z) = floor((x*y*z/(x*y + z^2))^2) .

Examples

			The first Pythagorean triangle is (x,y,z) = (3,4,5) and the rounded area of the square inside it is a(1) = f(3,4,5) = floor((3*4*5/(3*4+5^2))^2) = 2.
		

Crossrefs

Cf. A376608.