This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374601 #16 Mar 30 2025 04:25:50 %S A374601 1,1,4,28,278,3554,55382,1015750,21401830,508932130,13475090126, %T A374601 393026736854,12518884854734,432357148756210,16092438499462630, %U A374601 642170913160160710,27351173629037613494,1238472705706192189442,59411223892666111129022,3010044856761072109710262 %N A374601 Defined by: Sum_{i=1..n} i*a(i)/n^i = 1, n>=1. %H A374601 Seiichi Manyama, <a href="/A374601/b374601.txt">Table of n, a(n) for n = 1..387</a> %F A374601 a(n) = n^(n-1) - Sum_{i=1..n-1} n^(n-1-i)*i*a(i). %F A374601 a(n) = A374562(n)/n. %e A374601 1*a(1)/1^1 = 1, so a(1) = 1. %e A374601 1*a(1)/2^1 + 2*a(2)/2^2 = 1, so a(2) = 1. %e A374601 1*a(1)/3^1 + 2*a(2)/3^2 + 3*a(3)/3^3 = 1, so a(3) = 4. %p A374601 a:= proc(n) option remember; `if`(n<1, 0, %p A374601 n^(n-1)-add(n^(n-1-i)*a(i)*i, i=1..n-1)) %p A374601 end: %p A374601 seq(a(n), n=1..20); # _Alois P. Heinz_, Jul 13 2024 %t A374601 a[n_]:=a[n]=n^(n-1)-Sum[n^(n-1-i)*i*a[i],{i,1,n-1}] %o A374601 (PARI) a(n)=n^(n-1)-sum(i=1,n-1,n^(n-1-i)*i*a(i)) %Y A374601 Cf. A374562. %K A374601 nonn %O A374601 1,3 %A A374601 _Luc Rousseau_, Jul 13 2024